Home → 
Typefaces

About UN-11

Introducing UN-11, a rare cut of the Swiss classic by Adrian Frutiger faithfully digitized and carefully re-engineered for today’s typographic universe.

In 1961, IBM unveiled the Selectric Typewriter, featuring a revolutionary type ‘golf ball’ that replaced the traditional typebar mechanism. To expand their font catalog and promote this new technology, IBM enlisted Adrian Frutiger to adapt his iconic Univers, modifying it to suit the machine’s specific constraints and metrics. The result was an alternate version of Univers with unit-based spacing, marking an exciting and distinct departure from conventional monospaced type. To Frutiger, the font’s charmingly uneven rhythm uniquely combined mechanical precision with a human touch.

Today, UN-11’s idiosyncrasies stand out in a world of polished interfaces, rounded corners, and total easing. Throughout history, versions of Univers have been adapted for various typesetting technologies, from letterpress to phototype to PostScript, but none with quite the same unique flair as this. UN-11 is finally available, finely tuned for contemporary print and screen environments.

Available Cuts

  • Regular
  • Italic
  • Bold

Source Material

1/11

UN-11-R type “golf ball” for the IBM Selectric Typewriter (1961). This revolutionary technology introduced a unit-based spacing system between characters and enabled users to easily change typefaces.

11

Type Specimen

Regular
Regular
Solar
System
Regular
Solar
System
Regular
Red Dust
Enigma
Regular
Mars Exploration
Rover-2 (MER-A)
[2004–2010]
SATCAT №27827
Regular
Mars RVR-2
(MER-A)
[2004-2010]
SATCAT
NR. 27827
Regular
Regular
Cape Canaveral
SLC-17A
Delta Ⅱ 7925-9.5
January 4, 2004,
04:35 UTC
SCET MSD 46216
03:35 AMT
7.73 km (4.8 mi)
Regular
Regular
GUSEV CRATER
14.5684°S
175.472636°E
Regular

The diameter of Mars can be measured from the north pole to the south pole, or it can be measured at the equator. The planet’s oblate shape, caused by its rotation, results in a difference of about 42 kilometers (26 miles) between these two measurements. This difference occurs because Mars, like Earth, bulges slightly at its equator due to its rotational force. The mean diameter of Mars is approximately 6,779 kilometers (4,212 miles), which makes it about half the size of Earth. However, despite its smaller size, Mars has roughly the same land area as Earth due to the lack of oceans covering its surface. The planet’s polar diameter is slightly smaller than its equatorial diameter, contributing to its slightly flattened shape at the poles. These measurements provide important insights into the planet's geological processes, such as tectonic activity and its history of volcanism. Understanding these dimensions also aids in planning future missions to Mars, as they affect spacecraft trajectories and landing approaches.

 

 

 

 

Regular
Speed of Light:
299,792,458 m/sec
186,000 miles/sec
671 million m/hour
Italic
Speed of Sound:

(in dry air) at 20°C
343.33  m/sec

1,236 km/hour
Regular

Der Mount Everest wird am besten als der höchste Berg der Welt bezeichnet. Mit anderen Worten: Er ist mit mehr als 8.850 Metern über dem Meeresspiegel der höchste Berg. Andere Berge erheben jedoch den Anspruch, die höchsten Berge zu sein, wenn sie von anderen Punkten als dem Meeresspiegel aus gemessen werden. Der Chimborazo in Ecuador zum Beispiel wird als der höchste Gipfel, gemessen vom Mittelpunkt der Erde aus, bezeichnet. Mit einer Höhe von mehr als 6.000 Metern (20.000 Fuß) ist er jedoch niedriger als der Everest. Der Chimborazo befindet sich jedoch in der Nähe des Äquators, wo sich die Erde ausbeult, was bedeutet, dass er sich etwa 2.070 Meter weiter über dem Erdmittelpunkt befindet als der Everest. Insgesamt erreicht der Chimborazo eine Höhe von fast 6.400 Kilometern (4.000 Meilen) über dem Mittelpunkt der Erde. Gemessen von der Basis bis zum Gipfel ist der Mauna Kea auf Hawaii, der seinen Ursprung auf dem Grund des Ozeans hat, mit etwa 10.210 Metern (33.500 Fuß) weit höher als der Everest. Vom Meeresspiegel aus gemessen, erreicht der Mauna Kea nur etwa 4.200 Meter (13.800 Fuß). Der Mount Everest wird am besten als der höchste Berg der Welt bezeichnet. Mit anderen Worten: Er ist mit mehr als 8.850 Metern über dem Meeresspiegel der höchste Berg. Andere Berge erheben jedoch den Anspruch, die höchsten Berge zu sein, wenn sie von anderen Punkten als dem Meeresspiegel aus gemessen werden. Der Chimborazo in Ecuador wird beispielsweise als der höchste Gipfel genannt, wenn er vom Mittelpunkt der Erde aus gemessen wird. Mit einer Höhe von mehr als 6.000 Metern (20.000 Fuß) ist er jedoch niedriger als der Everest. Aber der Chimborazo befindet sich in der Nähe.

Regular

Sand, mineral, rock, or soil particles that range in diameter from 0.02 to 2 mm (0.0008–0.08 inch). Most of the rock-forming minerals that occur on the Earth’s surface are found in sand, but only a limited number are common in this form. Although in some localities feldspar, calcareous material, iron ores, and volcanic glass are dominant constituents of sand, quartz is by far the commonest, for several reasons: it is abundant in rocks, is comparatively hard, has practically no cleavage so that it is not readily worn down, is nearly insoluble in water, and does not decompose. Most quartzose sands contain a small quantity of feldspar, as well as small plates of white mica, which, though soft, decompose slowly. All sands contain small quantities of heavy rock-forming minerals, including garnet, tourmaline, zircon, rutile, topaz, pyroxenes, and amphiboles. In some shore and river sands these heavier constituents, as well as some of the heavy native elements, become concentrated as a result of sorting by currents and the removal of the lighter constituents. Such placer sands may be economically valuable deposits worked for diamonds and other gemstones, gold, platinum, tin, monazite, and other ores. Greensands, widely distributed over the floor of the ocean and found in ancient strata on the continents, owe their colour to the presence of glauconite, a potash-bearing mineral; these sands are used for water softeners.

Regular

Atom: The basic building block of all matter and chemistry measures 0,1–0,5 Nanometer. Atoms can combine with other atoms to form molecules but cannot be divided into smaller parts by ordinary chemical processes. Explore an atom’s interior to discover the layout of its nucleus, protons, and electrons Explore an atom’s interior to discover the layout of its nucleus, protons, and electrons. Most of the atom is empty space. The rest consists of three basic types of subatomic particles: protons, neutrons, and electrons. The protons and neutrons form the atom’s central nucleus. (The ordinary hydrogen atom is an exception; it contains one proton but no neutrons.) As their names suggest, protons have a positive electrical charge, while neutrons are electrically neutral – they carry no charge; overall, then, the nucleus has a positive charge. Circling the nucleus is a cloud of electrons, which are negatively charged. Like opposite ends of a magnet that attract one another, the negative electrons are attracted to a positive force, which binds them to the nucleus. The nucleus is small and dense compared with the electrons, which are the lightest charged particles in nature. The electrons circle the nucleus in orbital paths called shells, each of which holds only a certain number of electrons. Investigate varying electron configurations in electron shells around an atom’s nucleus Investigate varying electron configurations in electron shells around an atom’s nucleusSee all videos for this article An ordinary, neutral atom has an equal number of protons (in the nucleus) and electrons (surrounding the nucleus). Thus the positive and negative charges are balanced. Some atoms, however, lose or gain electrons in chemical reactions or in collisions with other particles. Ordinary atoms that either gain or lose electrons are called ions. If a neutral atom loses an electron, it becomes a positive ion. If it gains an electron, it becomes a negative ion. These basic subatomic particles – protons, neutrons, and electrons – are themselves made up of smaller substances, such as quarks and leptons. Atom, the basic building block of all matter and chemistry measures 0,1–0,5 Nanometer. Atoms can combine with other atoms to form molecules but cannot be divided into smaller parts by ordinary chemical processes. Explore an atom’s interior to discover the layout of its nucleus, protons, and electrons Explore an atom’s interior to discover the layout of its nucleus, protons, and electrons. Most of the atom is empty space. The rest consists of three basic types of subatomic particles: protons, neutrons, and electrons. The protons and neutrons form the atom’s central nucleus. (The ordinary hydrogen atom is an exception; it contains one proton but no neutrons.) As their names suggest, protons have a positive electrical charge, while neutrons are electrically neutral – they carry no charge; overall, then, the nucleus has a positive charge. Circling the nucleus is a cloud of electrons, which are negatively charged. Like opposite ends of a magnet that attract one another, the negative electrons are attracted to a positive force, which binds them to the nucleus. The nucleus is small and dense compared with the electrons, which are the lightest charged particles in nature. The electrons circle the nucleus in orbital paths called shells, each of which holds only a certain number of electrons. Investigate varying electron configurations in electron shells around an atom’s nucleus Investigate varying electron configurations in electron shells around an atom’s nucleusSee all videos for this article An ordinary, neutral atom has an equal number of protons (in the nucleus) and electrons (surrounding the nucleus). Thus the positive and negative charges are balanced. Some atoms, however, lose or gain electrons in chemical reactions or in collisions with other particles. Ordinary atoms that either gain or lose electrons are called ions. If a neutral atom loses an electron, it becomes a positive ion. If it gains an electron, it becomes a negative ion. These basic subatomic particles – protons, neutrons, and electrons – are themselves made up of smaller substances, such as quarks and leptons.

Regular

Gamma ray: 0,01 Nanometer, electromagnetic radiation of the shortest wavelength and highest energy. Gamma rays are produced in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. The commonly accepted definitions of the gamma-ray and X-ray regions of the electromagnetic spectrum include some wavelength overlap, with gamma-ray radiation having wavelengths that are generally shorter than a few tenths of an angstrom (10−10 metre) and gamma-ray photons having energies that are greater than tens of thousands of electron volts (eV). There is no theoretical upper limit to the energies of gamma-ray photons and no lower limit to gamma-ray wavelengths; observed energies presently extend up to a few trillion electron volts – these extremely high-energy photons are produced in astronomical sources through currently unidentified mechanisms. The term gamma ray was coined by British physicist Ernest Rutherford in 1903 following early studies of the emissions of radioactive nuclei. Just as atoms have discrete energy levels associated with different configurations of the orbiting electrons, atomic nuclei have energy level structures determined by the configurations of the protons and neutrons that constitute the nuclei. While energy differences between atomic energy levels are typically in the 1- to 10-eV range, energy differences in nuclei usually fall in the 1-keV (thousand electron volts) to 10-MeV (million electron volts) range. When a nucleus makes a transition from a high-energy level to a lower-energy level, a photon is emitted to carry off the excess energy; nuclear energy-level differences correspond to photon wavelengths in the gamma-ray region. Gamma ray, 0,01 Nanometer, electromagnetic radiation of the shortest wavelength and highest energy. Gamma rays are produced in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. The commonly accepted definitions of the gamma-ray and X-ray regions of the electromagnetic spectrum include some wavelength overlap, with gamma-ray radiation having wavelengths that are generally shorter than a few tenths of an angstrom (10−10 metre) and gamma-ray photons having energies that are greater than tens of thousands of electron volts (eV). There is no theoretical upper limit to the energies of gamma-ray photons and no lower limit to gamma-ray wavelengths; observed energies presently extend up to a few trillion electron volts – these extremely high-energy photons are produced in astronomical sources through currently unidentified mechanisms. The term gamma ray was coined by British physicist Ernest Rutherford in 1903 following early studies of the emissions of radioactive nuclei. Just as atoms have discrete energy levels associated with different configurations of the orbiting electrons, atomic nuclei have energy level structures determined by the configurations of the protons and neutrons that constitute the nuclei. While energy differences between atomic energy levels are typically in the 1- to 10-eV range, energy differences in nuclei usually fall in the 1-keV (thousand electron volts) to 10-MeV (million electron volts) range. When a nucleus makes a transition from a high-energy level to a lower-energy level, a photon is emitted to carry off the excess energy; nuclear energy-level differences correspond to photon wavelengths in the gamma-ray region.

Regular

Gamma ray: 0,01 Nanometer, electromagnetic radiation of the shortest wavelength and highest energy. Gamma rays are produced in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. The commonly accepted definitions of the gamma-ray and X-ray regions of the electromagnetic spectrum include some wavelength overlap, with gamma-ray radiation having wavelengths that are generally shorter than a few tenths of an angstrom (10−10 metre) and gamma-ray photons having energies that are greater than tens of thousands of electron volts (eV). There is no theoretical upper limit to the energies of gamma-ray photons and no lower limit to gamma-ray wavelengths; observed energies presently extend up to a few trillion electron volts – these extremely high-energy photons are produced in astronomical sources through currently unidentified mechanisms. The term gamma ray was coined by British physicist Ernest Rutherford in 1903 following early studies of the emissions of radioactive nuclei. Just as atoms have discrete energy levels associated with different configurations of the orbiting electrons, atomic nuclei have energy level structures determined by the configurations of the protons and neutrons that constitute the nuclei. While energy differences between atomic energy levels are typically in the 1- to 10-eV range, energy differences in nuclei usually fall in the 1-keV (thousand electron volts) to 10-MeV (million electron volts) range. When a nucleus makes a transition from a high-energy level to a lower-energy level, a photon is emitted to carry off the excess energy; nuclear energy-level differences correspond to photon wavelengths in the gamma-ray region. Gamma ray, 0,01 Nanometer, electromagnetic radiation of the shortest wavelength and highest energy. Gamma rays are produced in the disintegration of radioactive atomic nuclei and in the decay of certain subatomic particles. The commonly accepted definitions of the gamma-ray and X-ray regions of the electromagnetic spectrum include some wavelength overlap, with gamma-ray radiation having wavelengths that are generally shorter than a few tenths of an angstrom (10−10 metre) and gamma-ray photons having energies that are greater than tens of thousands of electron volts (eV). There is no theoretical upper limit to the energies of gamma-ray photons and no lower limit to gamma-ray wavelengths; observed energies presently extend up to a few trillion electron volts – these extremely high-energy photons are produced in astronomical sources through currently unidentified mechanisms. The term gamma ray was coined by British physicist Ernest Rutherford in 1903 following early studies of the emissions of radioactive nuclei. Just as atoms have discrete energy levels associated with different configurations of the orbiting electrons, atomic nuclei have energy level structures determined by the configurations of the protons and neutrons that constitute the nuclei. While energy differences between atomic energy levels are typically in the 1- to 10-eV range, energy differences in nuclei usually fall in the 1-keV (thousand electron volts) to 10-MeV (million electron volts) range. When a nucleus makes a transition from a high-energy level to a lower-energy level, a photon is emitted to carry off the excess energy; nuclear energy-level differences correspond to photon wavelengths in the gamma-ray region.

Regular

Quark: 1 Yoctometer, any member of a group of elementary subatomic particles that interact by means of the strong force and are believed to be among the fundamental constituents of matter. Quarks associate with one another via the strong force to make up protons and neutrons, in much the same way that the latter particles combine in various proportions to make up atomic nuclei. There are six types, or flavours, of quarks that differ from one another in their mass and charge characteristics. These six quark flavours can be grouped in three pairs: up and down, charm and strange, and top and bottom. Quarks appear to be true elementary particles; that is, they have no apparent structure and cannot be resolved into something smaller. In addition, however, quarks always seem to occur in combination with other quarks or with antiquarks, their antiparticles, to form all hadrons – the so-called strongly interacting particles that encompass both baryons and mesons. The interpretation of quarks as actual physical entities initially posed two major problems. First, quarks had to have half-integer spin (intrinsic angular momentum) values for the model to work, but at the same time they seemed to violate the Pauli exclusion principle, which governs the behaviour of all particles (called fermions) having odd half-integer spin. In many of the baryon configurations constructed of quarks, sometimes two or even three identical quarks had to be set in the same quantum state – an arrangement prohibited by the exclusion principle. Second, quarks appeared to defy being freed from the particles they made up. Although the forces binding quarks were strong, it seemed improbable that they were powerful enough to withstand bombardment by high-energy particle beams from accelerators. Quark (size: 1 Yoctometer), any member of a group of elementary subatomic particles that interact by means of the strong force and are believed to be among the fundamental constituents of matter. Quarks associate with one another via the strong force to make up protons and neutrons, in much the same way that the latter particles combine in various proportions to make up atomic nuclei. There are six types, or flavours, of quarks that differ from one another in their mass and charge characteristics. These six quark flavours can be grouped in three pairs: up and down, charm and strange, and top and bottom. Quarks appear to be true elementary particles; that is, they have no apparent structure and cannot be resolved into something smaller. In addition, however, quarks always seem to occur in combination with other quarks or with antiquarks, their antiparticles, to form all hadrons – the so-called strongly interacting particles that encompass both baryons and mesons. The interpretation of quarks as actual physical entities initially posed two major problems. First, quarks had to have half-integer spin (intrinsic angular momentum) values for the model to work, but at the same time they seemed to violate the Pauli exclusion principle, which governs the behaviour of all particles (called fermions) having odd half-integer spin. In many of the baryon configurations constructed of quarks, sometimes two or even three identical quarks had to be set in the same quantum state – an arrangement prohibited by the exclusion principle. Second, quarks appeared to defy being freed from the particles they made up. Although the forces binding quarks were strong, it seemed improbable that they were powerful enough to withstand bombardment by high-energy particle beams from accelerators.

Regular

Quark: 1 Yoctometer, any member of a group of elementary subatomic particles that interact by means of the strong force and are believed to be among the fundamental constituents of matter. Quarks associate with one another via the strong force to make up protons and neutrons, in much the same way that the latter particles combine in various proportions to make up atomic nuclei. There are six types, or flavours, of quarks that differ from one another in their mass and charge characteristics. These six quark flavours can be grouped in three pairs: up and down, charm and strange, and top and bottom. Quarks appear to be true elementary particles; that is, they have no apparent structure and cannot be resolved into something smaller. In addition, however, quarks always seem to occur in combination with other quarks or with antiquarks, their antiparticles, to form all hadrons – the so-called strongly interacting particles that encompass both baryons and mesons. The interpretation of quarks as actual physical entities initially posed two major problems. First, quarks had to have half-integer spin (intrinsic angular momentum) values for the model to work, but at the same time they seemed to violate the Pauli exclusion principle, which governs the behaviour of all particles (called fermions) having odd half-integer spin. In many of the baryon configurations constructed of quarks, sometimes two or even three identical quarks had to be set in the same quantum state – an arrangement prohibited by the exclusion principle. Second, quarks appeared to defy being freed from the particles they made up. Although the forces binding quarks were strong, it seemed improbable that they were powerful enough to withstand bombardment by high-energy particle beams from accelerators. Quark (size: 1 Yoctometer), any member of a group of elementary subatomic particles that interact by means of the strong force and are believed to be among the fundamental constituents of matter. Quarks associate with one another via the strong force to make up protons and neutrons, in much the same way that the latter particles combine in various proportions to make up atomic nuclei. There are six types, or flavours, of quarks that differ from one another in their mass and charge characteristics. These six quark flavours can be grouped in three pairs: up and down, charm and strange, and top and bottom. Quarks appear to be true elementary particles; that is, they have no apparent structure and cannot be resolved into something smaller. In addition, however, quarks always seem to occur in combination with other quarks or with antiquarks, their antiparticles, to form all hadrons – the so-called strongly interacting particles that encompass both baryons and mesons. The interpretation of quarks as actual physical entities initially posed two major problems. First, quarks had to have half-integer spin (intrinsic angular momentum) values for the model to work, but at the same time they seemed to violate the Pauli exclusion principle, which governs the behaviour of all particles (called fermions) having odd half-integer spin. In many of the baryon configurations constructed of quarks, sometimes two or even three identical quarks had to be set in the same quantum state – an arrangement prohibited by the exclusion principle. Second, quarks appeared to defy being freed from the particles they made up. Although the forces binding quarks were strong, it seemed improbable that they were powerful enough to withstand bombardment by high-energy particle beams from accelerators.

Bold
Bold
Metric
System
Bold
Bold
Bold
Imperial
System
Bold
Bold
Bold
MARATHON
26.2 Miles
(or) 42.2 Km
Bold
Unit Conversion
½ gal (2 qt)
2.54 cm  =  1 inch
16 oz  /   454 g
1 m  =  3.2808 ft
2 fur  ≈  ¼ mile
Bold
*Unit Conversion Chart*
2.54 Centimeters = 1 Inch
16 Ounces / 454 Grams
½ Gallon (2 Liquid Quarts)
2 Furlongs ≈ ¼ Mile
1,000 Years → 1 Millennium
Bold

The metric system or SI (International System) is the most common system of measurements in the world, and the easiest to use. The base units for the metric system are the units of: length, measured in meters [m]; temperature, measured in Celsius [°C]; mass, measured in grams [g]; and time, measured in seconds [s]. Additionally, the metric system includes units for electrical current, the ampere [A]; the amount of substance, the mole [mol]; luminous intensity, the candela [cd]; and thermodynamic temperature, the kelvin [K]. Each of these units can be scaled by powers of ten, making calculations easier and conversions between units more intuitive. For example, larger or smaller quantities are expressed using prefixes such as kilo- (1,000 times the base unit), centi- (1/100th), or milli- (1/1,000th). This system is highly efficient in scientific, industrial, and everyday contexts. Its universality allows for seamless communication of measurements in international settings, and it is also a significant improvement over older systems that had inconsistent units and required complex conversions. The metric system is legally recognized in most countries, and its use is mandated in industries like healthcare, science, and engineering. While some countries, such as the United States, still use the imperial system for everyday measurements, even there, the metric system is employed in scientific and technical fields, ensuring consistency worldwide. The adoption of the metric system has also played a crucial role in global trade, enabling countries to standardize measurements for production, shipping, and commerce. This standardization reduces errors, improves precision, and enhances communication in various industries. For instance, the aviation industry relies on SI units for air traffic control and flight operations, ensuring that all pilots, no matter their country of origin, can accurately interpret instructions.

Bold

The American National Standards Institute (ANSI) is a private nonprofit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide. ANSI accredits standards that are developed by representatives of other standards organizations, government agencies, consumer groups, companies, and others. These standards ensure that the characteristics and performance of products are consistent, that people use the same definitions and terms, and that products are tested the same way. ANSI also accredits organizations that carry out product or personnel certification in accordance with requirements defined in international standards. The American National Standards Institute (ANSI) is a private nonprofit organization that oversees the development of voluntary consensus standards for products, services, processes, systems, and personnel in the United States. The organization also coordinates U.S. standards with international standards so that American products can be used worldwide. ANSI accredits standards that are developed by representatives of other standards organizations, government agencies, consumer groups, companies, and others. These standards ensure that the characteristics and performance of products are consistent, that people use the same definitions and terms, and that products are tested the same way. ANSI also accredits organizations that carry out product or personnel certification in accordance with requirements defined in international standards.

 

Bold

ANSI was most likely founded in 1918 when five engineering societies and three government agencies formed the American Engineering Standards Committee (AESC). In 1928, the AESC became the American Standards Association (ASA). In 1966, the ASA was reorganised and changed its name to the United States of America Standards Institute (USASI). Prior to 1918, the five engineering societies: American Institute of Electrical Engineers (AIEE, now IEEE), American Society of Mechanical Engineers (ASME), American Society of Civil Engineers (ASCE), American Institute of Mining Engineers (AIME, now American Institute of Mining, Metallurgical, and Petroleum Engineers) and American Society for Testing and Materials (now ASTM International), formed the United Engineering Society (UES) membership. At the instigation of the AIEE, they invited the US government departments of War, Navy (which were merged into the Department of Defense (DOD) in 1947) and Commerce to participate in the founding of a national standards organisation. ANSI was most likely founded in 1918 when five engineering societies and three government agencies formed the American Engineering Standards Committee (AESC). In 1928, the AESC became the American Standards Association (ASA). In 1966, the ASA was reorganised and changed its name to the United States of America Standards Institute (USASI). Prior to 1918, the five engineering societies: American Institute of Electrical Engineers (AIEE, now IEEE), American Society of Mechanical Engineers (ASME), American Society of Civil Engineers (ASCE), American Institute of Mining Engineers (AIME, now American Institute of Mining, Metallurgical, and Petroleum Engineers) and American Society for Testing and Materials (now ASTM International), formed the United Engineering Society (UES) membership. At the instigation of the AIEE, they invited the US government departments of War, Navy (which were merged into the Department of Defense (DOD) in 1947) and Commerce to participate in the founding of a national standards organisation.

Bold

L’Association française de normalisation (abrégée Afnor ou AFNOR) est l’organisation française qui représente la France auprès de l’Organisation internationale de normalisation (ISO) et du Comité européen de normalisation (CEN). Depuis le 1er janvier 2014, à la suite du rapprochement de l’Afnor elle est aussi membre du Comité européen de normalisation en électronique et en électrotechnique (CENELEC) au niveau européen, et de la Commission électrotechnique internationale (CEI) au niveau international. L’Association française de normalisation a été créée en 1926 ; elle est placée sous la tutelle du ministère chargé de l’industrie. Son rôle est précisé dans le décret № 2009–697 du 16 juin 2009 relatif à la normalisation, qui lui confère une mission d’intérêt général, décret modifié par celui du 10 novembre 2021. À ce titre, elle perçoit une subvention publique couvrant une partie de ses activités. En 2022, ce soutien représentait 3,2 % des produits du Groupe AFNOR, dont l’association constitue la holding. Reconnue d’utilité publique, l’Afnor comptait 1 498 membres-adhérents au 31 décembre 2022. Depuis sa fusion avec l’Association française pour l’assurance de la qualité en 2004, elle fait partie du Groupe AFNOR. L’AFNOR édite la collection des normes NF qui identifie habituellement un document par la forme NF L CC-CCC dans la nomenclature nationale française. L’Association française de normalisation (abrégée Afnor ou AFNOR) est l’organisation française qui représente la France auprès de l’Organisation internationale de normalisation (ISO) et du Comité européen de normalisation (CEN). Depuis le 1er janvier 2014, à la suite du rapprochement de l’Afnor elle est aussi membre du Comité européen de normalisation en électronique et en électrotechnique (CENELEC) au niveau européen, et de la Commission électrotechnique internationale (CEI) au niveau international. L’Association française de normalisation a été créée en 1926 ; elle est placée sous la tutelle du ministère chargé de l’industrie. Son rôle est précisé dans le décret № 2009–697 du 16 juin 2009 relatif à la normalisation, qui lui confère une mission d’intérêt général, décret modifié par celui du 10 novembre 2021. À ce titre, elle perçoit une subvention publique couvrant une partie de ses activités. En 2022, ce soutien représentait 3,2 % des produits du Groupe AFNOR, dont l’association constitue la holding. Reconnue d’utilité publique, l’Afnor comptait 1 498 membres-adhérents au 31 décembre 2022. Depuis sa fusion avec l’Association française pour l’assurance de la qualité en 2004, elle fait partie du Groupe AFNOR. L’AFNOR édite la collection des normes NF qui identifie habituellement un document par la forme NF L CC-CCC dans la nomenclature nationale française.

Bold

Das Deutsche Institut für Normung e.V. (DIN) ist die bedeutendste nationale Normungsorganisation in der Bundesrepublik Deutschland. Sie wurde am 22. Dezember 1917 unter dem Namen „Normenausschuß der deutschen Industrie“ gegründet. Eine erste Umbenennung erfolgte 1926 zu „Deutscher Normenausschuß“, um auszudrücken, dass sich das Arbeitsgebiet nicht mehr auf die Industrie beschränkte. Der heutige Name „DIN Deutsches Institut für Normung e.V.“ wurde 1975 im Zusammenhang mit dem zwischen der Organisation und der Bundesrepublik Deutschland abgeschlossenen Normenvertrag gewählt. Eine unter der Leitung von Arbeitsausschüssen dieser Normungsorganisation erarbeitete Norm wird als DIN-Norm bezeichnet. Das Deutsche Institut für Normung ist ein eingetragener Verein, wird privatwirtschaftlich getragen und bei seinen europäischen und internationalen Normungsaktivitäten von der Bundesrepublik Deutschland als einzige nationale Normungsorganisation unterstützt. Es bietet den sogenannten „interessierten Kreisen“ (Hersteller, Handel, Industrie, Wissenschaft, Verbraucher, Prüfinstitute und Behörden) ein Forum, im Konsensverfahren Normen zu erarbeiten. Der interessierte Kreis der Verbraucher wird durch den Verbraucherrat des DIN vertreten. Das DIN ist Mitglied der Europäischen Bewegung Deutschlands. Das Deutsche Institut für Normung e.V. (DIN) ist die bedeutendste nationale Normungsorganisation in der Bundesrepublik Deutschland. Sie wurde am 22. Dezember 1917 unter dem Namen „Normenausschuß der deutschen Industrie“ gegründet. Eine erste Umbenennung erfolgte 1926 zu „Deutscher Normenausschuß“, um auszudrücken, dass sich das Arbeitsgebiet nicht mehr auf die Industrie beschränkte. Der heutige Name „DIN Deutsches Institut für Normung e.V.“ wurde 1975 im Zusammenhang mit dem zwischen der Organisation und der Bundesrepublik Deutschland abgeschlossenen Normenvertrag gewählt. Eine unter der Leitung von Arbeitsausschüssen dieser Normungsorganisation erarbeitete Norm wird als DIN-Norm bezeichnet. Das Deutsche Institut für Normung ist ein eingetragener Verein, wird privatwirtschaftlich getragen und bei seinen europäischen und internationalen Normungsaktivitäten von der Bundesrepublik Deutschland als einzige nationale Normungsorganisation unterstützt. Es bietet den sogenannten „interessierten Kreisen“ (Hersteller, Handel, Industrie, Wissenschaft, Verbraucher, Prüfinstitute und Behörden) ein Forum, im Konsensverfahren Normen zu erarbeiten. Der interessierte Kreis der Verbraucher wird durch den Verbraucherrat des DIN vertreten. Das DIN ist Mitglied der Europäischen Bewegung Deutschlands. 

The German Institute for Standardization (DIN) is the most important national standards organization in the Federal Republic of Germany. It was founded on December 22, 1917 under the name “Standards Committee of German Industry”. It was first renamed “German Standards Committee” in 1926 to express the fact that its field of activity was no longer limited to industry. The current name “DIN Deutsches Institut für Normung e.V.” was chosen in 1975 in connection with the standards agreement concluded between the organization and the Federal Republic of Germany. A standard developed under the direction of working committees of this standardization organization is referred to as a DIN standard. The German Institute for Standardization is a registered association, privately funded and supported in its European and international standardization activities by the Federal Republic of Germany as the only national standards organization. It offers the so-called “interested parties” (manufacturers, trade, industry, science, consumers, testing institutes and authorities) a forum for developing standards by consensus. The consumer interest group is represented by the DIN Consumer Council. DIN is a member of the European Movement of Germany. The German Institute for Standardization (DIN) is the most important national standardization organization in the Federal Republic of Germany. It was founded on December 22, 1917 under the name “Normenausschuß der d

DE

Bold

Das Deutsche Institut für Normung e.V. (DIN) ist die bedeutendste nationale Normungsorganisation in der Bundesrepublik Deutschland. Sie wurde am 22. Dezember 1917 unter dem Namen „Normenausschuß der deutschen Industrie“ gegründet. Eine erste Umbenennung erfolgte 1926 zu „Deutscher Normenausschuß“, um auszudrücken, dass sich das Arbeitsgebiet nicht mehr auf die Industrie beschränkte. Der heutige Name „DIN Deutsches Institut für Normung e.V.“ wurde 1975 im Zusammenhang mit dem zwischen der Organisation und der Bundesrepublik Deutschland abgeschlossenen Normenvertrag gewählt. Eine unter der Leitung von Arbeitsausschüssen dieser Normungsorganisation erarbeitete Norm wird als DIN-Norm bezeichnet. Das Deutsche Institut für Normung ist ein eingetragener Verein, wird privatwirtschaftlich getragen und bei seinen europäischen und internationalen Normungsaktivitäten von der Bundesrepublik Deutschland als einzige nationale Normungsorganisation unterstützt. Es bietet den sogenannten „interessierten Kreisen“ (Hersteller, Handel, Industrie, Wissenschaft, Verbraucher, Prüfinstitute und Behörden) ein Forum, im Konsensverfahren Normen zu erarbeiten. Der interessierte Kreis der Verbraucher wird durch den Verbraucherrat des DIN vertreten. Das DIN ist Mitglied der Europäischen Bewegung Deutschlands. Das Deutsche Institut für Normung e.V. (DIN) ist die bedeutendste nationale Normungsorganisation in der Bundesrepublik Deutschland. Sie wurde am 22. Dezember 1917 unter dem Namen „Normenausschuß der deutschen Industrie“ gegründet. Eine erste Umbenennung erfolgte 1926 zu „Deutscher Normenausschuß“, um auszudrücken, dass sich das Arbeitsgebiet nicht mehr auf die Industrie beschränkte. Der heutige Name „DIN Deutsches Institut für Normung e.V.“ wurde 1975 im Zusammenhang mit dem zwischen der Organisation und der Bundesrepublik Deutschland abgeschlossenen Normenvertrag gewählt. Eine unter der Leitung von Arbeitsausschüssen dieser Normungsorganisation erarbeitete Norm wird als DIN-Norm bezeichnet. Das Deutsche Institut für Normung ist ein eingetragener Verein, wird privatwirtschaftlich getragen und bei seinen europäischen und internationalen Normungsaktivitäten von der Bundesrepublik Deutschland als einzige nationale Normungsorganisation unterstützt. Es bietet den sogenannten „interessierten Kreisen“ (Hersteller, Handel, Industrie, Wissenschaft, Verbraucher, Prüfinstitute und Behörden) ein Forum, im Konsensverfahren Normen zu erarbeiten. Der interessierte Kreis der Verbraucher wird durch den Verbraucherrat des DIN vertreten. Das DIN ist Mitglied der Europäischen Bewegung Deutschlands. 

The German Institute for Standardization (DIN) is the most important national standards organization in the Federal Republic of Germany. It was founded on December 22, 1917 under the name “Standards Committee of German Industry”. It was first renamed “German Standards Committee” in 1926 to express the fact that its field of activity was no longer limited to industry. The current name “DIN Deutsches Institut für Normung e.V.” was chosen in 1975 in connection with the standards agreement concluded between the organization and the Federal Republic of Germany. A standard developed under the direction of working committees of this standardization organization is referred to as a DIN standard. The German Institute for Standardization is a registered association, privately funded and supported in its European and international standardization activities by the Federal Republic of Germany as the only national standards organization. It offers the so-called “interested parties” (manufacturers, trade, industry, science, consumers, testing institutes and authorities) a forum for developing standards by consensus. The consumer interest group is represented by the DIN Consumer Council. DIN is a member of the European Movement of Germany. The German Institute for Standardization (DIN) is the most important national standardization organization in the Federal Republic of Germany. It was founded on December 22, 1917 under the name “Normenausschuß der d

DE

Bold

Aufgabe des DIN ist es, zum Nutzen der Allgemeinheit unter Wahrung des öffentlichen Interesses die Normung anzuregen, zu organisieren, zu steuern und zu moderieren. Die Arbeitsergebnisse dienen der Innovation, der Rationalisierung, Verständigung in Wirtschaft, Wissenschaft, Verwaltung und Öffentlichkeit, der Sicherung von Gebrauchstauglichkeit, Qualitätssicherung, Kompatibilität, Austauschbarkeit, Gesundheit, Sicherheit, dem Verbraucherschutz, Arbeitsschutz und dem Umweltschutz. Bei ihrer Erstellung wird angestrebt, dass die allgemein anerkannten Regeln der Technik eingehalten werden und der aktuelle Stand der Technik berücksichtigt wird. Die elektrotechnischen Themen werden von DIN und dem deutschen Verband der Elektrotechnik (VDE) gemeinsam in der DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE bearbeitet. Das DIN arbeitet in den internationalen und europäischen Normengremien ISO und CEN und in den elektrotechnischen Organisationen IEC und CENELEC mit, um die deutschen Interessen zu vertreten und den internationalen freien Warenverkehr zu fördern. Es organisiert die Eingliederung internationaler Normen in das deutsche Normenwerk. In der Schweiz leistet die Schweizerische Normen-Vereinigung (SNV) und in Österreich das Austrian Standards International (ÖNORM) vergleichbare Arbeit. Aufgabe des DIN ist es, zum Nutzen der Allgemeinheit unter Wahrung des öffentlichen Interesses die Normung anzuregen, zu organisieren, zu steuern und zu moderieren. Die Arbeitsergebnisse dienen der Innovation, der Rationalisierung, Verständigung in Wirtschaft, Wissenschaft, Verwaltung und Öffentlichkeit, der Sicherung von Gebrauchstauglichkeit, Qualitätssicherung, Kompatibilität, Austauschbarkeit, Gesundheit, Sicherheit, dem Verbraucherschutz, Arbeitsschutz und dem Umweltschutz. Bei ihrer Erstellung wird angestrebt, dass die allgemein anerkannten Regeln der Technik eingehalten werden und der aktuelle Stand der Technik berücksichtigt wird. Die elektrotechnischen Themen werden von DIN und dem deutschen Verband der Elektrotechnik (VDE) gemeinsam in der DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE bearbeitet. Das DIN arbeitet in den internationalen und europäischen Normengremien ISO und CEN und in den elektrotechnischen Organisationen IEC und CENELEC mit, um die deutschen Interessen zu vertreten und den internationalen freien Warenverkehr zu fördern. Es organisiert die Eingliederung internationaler Normen in das deutsche Normenwerk. In der Schweiz leistet die Schweizerische Normen-Vereinigung (SNV) und in Österreich das Austrian Standards International (ÖNORM) vergleichbare Arbeit.

Bold

Aufgabe des DIN ist es, zum Nutzen der Allgemeinheit unter Wahrung des öffentlichen Interesses die Normung anzuregen, zu organisieren, zu steuern und zu moderieren. Die Arbeitsergebnisse dienen der Innovation, der Rationalisierung, Verständigung in Wirtschaft, Wissenschaft, Verwaltung und Öffentlichkeit, der Sicherung von Gebrauchstauglichkeit, Qualitätssicherung, Kompatibilität, Austauschbarkeit, Gesundheit, Sicherheit, dem Verbraucherschutz, Arbeitsschutz und dem Umweltschutz. Bei ihrer Erstellung wird angestrebt, dass die allgemein anerkannten Regeln der Technik eingehalten werden und der aktuelle Stand der Technik berücksichtigt wird. Die elektrotechnischen Themen werden von DIN und dem deutschen Verband der Elektrotechnik (VDE) gemeinsam in der DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE bearbeitet. Das DIN arbeitet in den internationalen und europäischen Normengremien ISO und CEN und in den elektrotechnischen Organisationen IEC und CENELEC mit, um die deutschen Interessen zu vertreten und den internationalen freien Warenverkehr zu fördern. Es organisiert die Eingliederung internationaler Normen in das deutsche Normenwerk. In der Schweiz leistet die Schweizerische Normen-Vereinigung (SNV) und in Österreich das Austrian Standards International (ÖNORM) vergleichbare Arbeit. Aufgabe des DIN ist es, zum Nutzen der Allgemeinheit unter Wahrung des öffentlichen Interesses die Normung anzuregen, zu organisieren, zu steuern und zu moderieren. Die Arbeitsergebnisse dienen der Innovation, der Rationalisierung, Verständigung in Wirtschaft, Wissenschaft, Verwaltung und Öffentlichkeit, der Sicherung von Gebrauchstauglichkeit, Qualitätssicherung, Kompatibilität, Austauschbarkeit, Gesundheit, Sicherheit, dem Verbraucherschutz, Arbeitsschutz und dem Umweltschutz. Bei ihrer Erstellung wird angestrebt, dass die allgemein anerkannten Regeln der Technik eingehalten werden und der aktuelle Stand der Technik berücksichtigt wird. Die elektrotechnischen Themen werden von DIN und dem deutschen Verband der Elektrotechnik (VDE) gemeinsam in der DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik im DIN und VDE bearbeitet. Das DIN arbeitet in den internationalen und europäischen Normengremien ISO und CEN und in den elektrotechnischen Organisationen IEC und CENELEC mit, um die deutschen Interessen zu vertreten und den internationalen freien Warenverkehr zu fördern. Es organisiert die Eingliederung internationaler Normen in das deutsche Normenwerk. In der Schweiz leistet die Schweizerische Normen-Vereinigung (SNV) und in Österreich das Austrian Standards International (ÖNORM) vergleichbare Arbeit.

Bold
Measure Twice,
Cut Once.
Bold
Measure
Twice,
Cut Once.
W3siaWQiOiIyODY1NiIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6ImltYWdlIiwiaW1hZ2UiOiJcL2ltYWdlc1wvTkFTQS5zdmcifV0sImluZGV4IjowLCJ0aXRsZSI6IlJlZ3VsYXIiLCJyYXRpbyI6IjIuNDAiLCJyZXNpemVncm91cCI6bnVsbH0seyJpZCI6IjI2ODIzIiwidHlwZSI6InNhbXBsZSIsIndpZHRoIjoieGxhcmdlIiwiZGlzcGxheW9uIjpbImRlc2t0b3AiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwibGluZUhlaWdodCI6IjAuODUiLCJsZXR0ZXJTcGFjaW5nIjoiLTAuMDNlbSIsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIiLCJtYXJnaW5Ub3AiOiItMC4wOWVtIiwidGV4dCI6IlNvbGFyPGJyIFwvPlxyXG5TeXN0ZW0iLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS42NyIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg2ODMiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsibW9iaWxlIl0sImFsdGVybmF0ZXMiOltdLCJjb250ZW50cyI6W3siaW5kZXgiOjAsInR5cGUiOiJ0ZXh0IiwiZm9udEZhbWlseSI6Iidmb250LTE1MjczJyIsImxpbmVIZWlnaHQiOiIwLjg1IiwibGV0dGVyU3BhY2luZyI6Ii0wLjAzZW0iLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIiwibWFyZ2luVG9wIjoiLTAuMTJlbSIsInRleHQiOiJTb2xhcjxiciBcLz5cclxuU3lzdGVtIiwiY29sb3IiOiIwMDAwMDAiLCJiYWNrZ3JvdW5kQ29sb3IiOm51bGwsImhpZGVCb3JkZXIiOmZhbHNlfV0sImluZGV4IjowLCJ0aXRsZSI6IlJlZ3VsYXIiLCJyYXRpbyI6IjEuNjciLCJyZXNpemVncm91cCI6bnVsbH0seyJpZCI6IjI2ODI1IiwidHlwZSI6InNhbXBsZSIsIndpZHRoIjoieGxhcmdlIiwiZGlzcGxheW9uIjpbImRlc2t0b3AiLCJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwibGluZUhlaWdodCI6IjAuOSIsImxldHRlclNwYWNpbmciOiItMC4wM2VtIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjA4ZW0iLCJ0ZXh0IjoiUmVkIER1c3QgPGJyIFwvPlxyXG5FbmlnbWEiLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMi4wMCIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjY4MjciLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJsaW5lSGVpZ2h0IjoiMSIsImxldHRlclNwYWNpbmciOiItMC4wMWVtIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6Ilwic3MwMVwiLCBcImNhc2VcIiIsIm1hcmdpblRvcCI6Ii0wLjA1ZW0iLCJ0ZXh0IjoiTWFycyBFeHBsb3JhdGlvbjxiciBcLz5cclxuUm92ZXItMiAoTUVSLUEpPGJyIFwvPlxyXG5bMjAwNFx1MjAxMzIwMTBdPGJyIFwvPlxyXG5TQVRDQVQgXHUyMTE2Mjc4MjciLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6dHJ1ZX1dLCJpbmRleCI6MCwidGl0bGUiOiJSZWd1bGFyIiwicmF0aW8iOiIyLjAwIiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyODY1OSIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwibGluZUhlaWdodCI6IjEiLCJsZXR0ZXJTcGFjaW5nIjoiLTAuMDFlbSIsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiJcInNzMDFcIiwgXCJjYXNlXCIiLCJtYXJnaW5Ub3AiOiItMC4xZW0iLCJ0ZXh0IjoiTWFycyBSVlItMjxiciBcLz5cclxuKE1FUi1BKTxiciBcLz5cclxuWzIwMDQtMjAxMF08YnIgXC8+XHJcblNBVENBVDxiciBcLz5cclxuTlIuIDI3ODI3IiwiY29sb3IiOiIwMDAwMDAiLCJiYWNrZ3JvdW5kQ29sb3IiOm51bGwsImhpZGVCb3JkZXIiOnRydWV9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS4xMSIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg2NjEiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsibW9iaWxlIl0sImFsdGVybmF0ZXMiOltdLCJjb250ZW50cyI6W3siaW5kZXgiOjAsInR5cGUiOiJpbWFnZSIsImltYWdlIjoiXC9pbWFnZXNcL00yX0g2LnN2ZyJ9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS42NyIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjY4MzEiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCIsIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJsaW5lSGVpZ2h0IjoiMSIsImxldHRlclNwYWNpbmciOiItMC4wMTVlbSIsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIiLCJtYXJnaW5Ub3AiOiItMC4xZW0iLCJ0ZXh0IjoiQ2FwZSBDYW5hdmVyYWw8YnIgXC8+XHJcblNMQy0xN0E8YnIgXC8+XHJcbkRlbHRhIFx1MjE2MSA3OTI1LTkuNTxiciBcLz5cclxuSmFudWFyeSA0LCAyMDA0LDxiciBcLz5cclxuMDQ6MzUgVVRDPGJyIFwvPlxyXG5TQ0VUIE1TRCA0NjIxNiA8YnIgXC8+XHJcbjAzOjM1IEFNVDxiciBcLz5cclxuNy43M1x1MjAwOWttICg0LjhcdTIwMDltaSkiLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS4wMiIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjY4MzMiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoiaW1hZ2UiLCJpbWFnZSI6IlwvaW1hZ2VzXC9VTl8xMV9Cb2xkX1NhbXBsZV8wM18yLnN2ZyJ9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS4wMiIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg1MDIiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJsaW5lSGVpZ2h0IjoiMSIsImxldHRlclNwYWNpbmciOiItMC4wMmVtIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6ZmFsc2UsInRleHQiOiJHVVNFViBDUkFURVI8YnIgXC8+XHJcbjE0LjU2ODRcdTAwYjBTPGJyIFwvPlxyXG4xNzUuNDcyNjM2XHUwMGIwRSIsImNvbG9yIjoiMDAwMDAwIiwiYmFja2dyb3VuZENvbG9yIjpudWxsLCJoaWRlQm9yZGVyIjpmYWxzZX1dLCJpbmRleCI6MCwidGl0bGUiOiJSZWd1bGFyIiwicmF0aW8iOiIyLjY3IiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyODUwNCIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyODUwNSIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJmb250U2l6ZSI6IjU0IiwibGluZUhlaWdodCI6IjU3IiwibGV0dGVyU3BhY2luZyI6IjAuMDI1ZW0iLCJoZWlnaHRBZGRpdGlvbiI6MiwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiJ9XSwiY29udGVudHMiOltdLCJ0aXRsZSI6IlJlZ3VsYXIiLCJpbmRleCI6MCwidGV4dCI6IjxwPlRoZSBkaWFtZXRlciBvZiBNYXJzIGNhbiBiZSBtZWFzdXJlZCBmcm9tIHRoZSBub3J0aCBwb2xlIHRvIHRoZSBzb3V0aCBwb2xlLCBvciBpdCBjYW4gYmUgbWVhc3VyZWQgYXQgdGhlIGVxdWF0b3IuIFRoZSBwbGFuZXRcdTIwMTlzIG9ibGF0ZSBzaGFwZSwmbmJzcDtjYXVzZWQgYnkgaXRzIHJvdGF0aW9uLCByZXN1bHRzIGluIGEgZGlmZmVyZW5jZSBvZiBhYm91dCA0MiBraWxvbWV0ZXJzICgyNiBtaWxlcykgYmV0d2VlbiB0aGVzZSB0d28gbWVhc3VyZW1lbnRzLiBUaGlzIGRpZmZlcmVuY2Ugb2NjdXJzIGJlY2F1c2UgTWFycywgbGlrZSBFYXJ0aCwgYnVsZ2VzIHNsaWdodGx5IGF0IGl0cyBlcXVhdG9yIGR1ZSB0byBpdHMgcm90YXRpb25hbCBmb3JjZS4gVGhlIG1lYW4gZGlhbWV0ZXIgb2YgTWFycyBpcyBhcHByb3hpbWF0ZWx5IDYsNzc5IGtpbG9tZXRlcnMgKDQsMjEyIG1pbGVzKSwgd2hpY2ggbWFrZXMgaXQgYWJvdXQgaGFsZiB0aGUgc2l6ZSBvZiBFYXJ0aC4gSG93ZXZlciwgZGVzcGl0ZSBpdHMgc21hbGxlciBzaXplLCBNYXJzIGhhcyByb3VnaGx5IHRoZSBzYW1lIGxhbmQgYXJlYSBhcyBFYXJ0aCBkdWUgdG8gdGhlIGxhY2sgb2Ygb2NlYW5zIGNvdmVyaW5nIGl0cyBzdXJmYWNlLiBUaGUgcGxhbmV0XHUyMDE5cyBwb2xhciBkaWFtZXRlciBpcyBzbGlnaHRseSBzbWFsbGVyIHRoYW4gaXRzIGVxdWF0b3JpYWwgZGlhbWV0ZXIsIGNvbnRyaWJ1dGluZyB0byBpdHMgc2xpZ2h0bHkgZmxhdHRlbmVkIHNoYXBlIGF0IHRoZSBwb2xlcy4gVGhlc2UgbWVhc3VyZW1lbnRzIHByb3ZpZGUgaW1wb3J0YW50IGluc2lnaHRzIGludG8gdGhlIHBsYW5ldCdzIGdlb2xvZ2ljYWwgcHJvY2Vzc2VzLCBzdWNoIGFzIHRlY3RvbmljIGFjdGl2aXR5IGFuZCBpdHMgaGlzdG9yeSBvZiB2b2xjYW5pc20uIFVuZGVyc3RhbmRpbmcgdGhlc2UgZGltZW5zaW9ucyBhbHNvIGFpZHMgaW4gcGxhbm5pbmcgZnV0dXJlIG1pc3Npb25zIHRvIE1hcnMsIGFzIHRoZXkgYWZmZWN0IHNwYWNlY3JhZnQgdHJhamVjdG9yaWVzIGFuZCBsYW5kaW5nIGFwcHJvYWNoZXMuPFwvcD5cclxuXHJcbjxwPiZuYnNwOzxcL3A+XHJcblxyXG48cD4mbmJzcDs8XC9wPlxyXG5cclxuPHA+Jm5ic3A7PFwvcD5cclxuXHJcbjxwPiZuYnNwOzxcL3A+IiwiY29sb3IiOiIiLCJiYWNrZ3JvdW5kQ29sb3IiOiIiLCJudW1MaW5lcyI6OSwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjg2NjMiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCIsIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJsaW5lSGVpZ2h0IjoiMS4xIiwibGV0dGVyU3BhY2luZyI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIiLCJtYXJnaW5Ub3AiOiItMC4xNWVtIiwidGV4dCI6IlNwZWVkIG9mIExpZ2h0OjxiciBcLz5cclxuMjk5LDc5Miw0NThcdTIwMDltXC9zZWM8YnIgXC8+XHJcbjE4NiwwMDBcdTIwMDltaWxlc1wvc2VjPGJyIFwvPlxyXG42NzFcdTIwMDltaWxsaW9uIG1cL2hvdXIiLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiUmVndWxhciIsInJhdGlvIjoiMS44NyIsInJlc2l6ZWdyb3VwIjoiZCJ9LHsiaWQiOiIyNjgyOSIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6Im1lZGl1bSIsImRpc3BsYXlvbiI6WyJkZXNrdG9wIiwibW9iaWxlIl0sImFsdGVybmF0ZXMiOltdLCJjb250ZW50cyI6W3siaW5kZXgiOjAsInR5cGUiOiJ0ZXh0IiwiZm9udEZhbWlseSI6Iidmb250LTE1OTM2JyIsImxpbmVIZWlnaHQiOiIxLjEiLCJsZXR0ZXJTcGFjaW5nIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjE1ZW0iLCJ0ZXh0IjoiU3BlZWQgb2YgU291bmQ6XHUyMDI4PGJyIFwvPlxyXG4oaW4gZHJ5IGFpcikgYXQgMjBcdTAwYjBDPGJyIFwvPlxyXG4zNDMuMzNcdTIwMDlcdTIwMDltXC9zZWNcdTIwMjg8YnIgXC8+XHJcbjEsMjM2XHUyMDA5a21cL2hvdXIiLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiSXRhbGljIiwicmF0aW8iOiIxLjg3IiwicmVzaXplZ3JvdXAiOiJkIn0seyJpZCI6IjI2ODM5IiwidHlwZSI6InRleHQiLCJ3aWR0aCI6Im1lZGl1bSIsImRpc3BsYXlvbiI6WyJkZXNrdG9wIl0sImFsdGVybmF0ZXMiOlt7Il9pZCI6IjI2ODQwIiwiaW5kZXgiOjAsInRpdGxlIjoiIiwiZm9udEZhbWlseSI6Iidmb250LTE1MjczJyIsImZvbnRTaXplIjoiMzgiLCJsaW5lSGVpZ2h0IjoiNDQiLCJsZXR0ZXJTcGFjaW5nIjoiMC4wMjVlbSIsImhlaWdodEFkZGl0aW9uIjowLCJwYWRkaW5nbHIiOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIn1dLCJjb250ZW50cyI6W10sInRpdGxlIjoiUmVndWxhciIsImluZGV4IjowLCJ0ZXh0IjoiPHA+RGVyIE1vdW50IEV2ZXJlc3Qgd2lyZCBhbSBiZXN0ZW4gYWxzIGRlciBoXHUwMGY2Y2hzdGUgQmVyZyBkZXIgV2VsdCBiZXplaWNobmV0LiBNaXQgYW5kZXJlbiBXb3J0ZW46IEVyIGlzdCBtaXQgbWVociBhbHMgOC44NTAgTWV0ZXJuIFx1MDBmY2JlciBkZW0gTWVlcmVzc3BpZWdlbCBkZXIgaFx1MDBmNmNoc3RlIEJlcmcuIEFuZGVyZSBCZXJnZSBlcmhlYmVuIGplZG9jaCBkZW4gQW5zcHJ1Y2gsIGRpZSBoXHUwMGY2Y2hzdGVuIEJlcmdlIHp1IHNlaW4sIHdlbm4gc2llIHZvbiBhbmRlcmVuIFB1bmt0ZW4gYWxzIGRlbSBNZWVyZXNzcGllZ2VsIGF1cyBnZW1lc3NlbiB3ZXJkZW4uIERlciBDaGltYm9yYXpvIGluIEVjdWFkb3IgenVtIEJlaXNwaWVsIHdpcmQgYWxzIGRlciBoXHUwMGY2Y2hzdGUgR2lwZmVsLCBnZW1lc3NlbiB2b20gTWl0dGVscHVua3QgZGVyIEVyZGUgYXVzLCBiZXplaWNobmV0LiBNaXQgZWluZXIgSFx1MDBmNmhlIHZvbiBtZWhyIGFscyA2LjAwMCBNZXRlcm4gKDIwLjAwMCBGdVx1MDBkZikgaXN0IGVyIGplZG9jaCBuaWVkcmlnZXIgYWxzIGRlciBFdmVyZXN0LiBEZXIgQ2hpbWJvcmF6byBiZWZpbmRldCBzaWNoIGplZG9jaCBpbiBkZXIgTlx1MDBlNGhlIGRlcyBcdTAwYzRxdWF0b3JzLCB3byBzaWNoIGRpZSBFcmRlIGF1c2JldWx0LCB3YXMgYmVkZXV0ZXQsIGRhc3MgZXIgc2ljaCBldHdhIDIuMDcwIE1ldGVyIHdlaXRlciBcdTAwZmNiZXIgZGVtIEVyZG1pdHRlbHB1bmt0IGJlZmluZGV0IGFscyBkZXIgRXZlcmVzdC4gSW5zZ2VzYW10IGVycmVpY2h0IGRlciBDaGltYm9yYXpvIGVpbmUgSFx1MDBmNmhlIHZvbiBmYXN0IDYuNDAwIEtpbG9tZXRlcm4gKDQuMDAwIE1laWxlbikgXHUwMGZjYmVyIGRlbSBNaXR0ZWxwdW5rdCBkZXIgRXJkZS4gR2VtZXNzZW4gdm9uIGRlciBCYXNpcyBiaXMgenVtIEdpcGZlbCBpc3QgZGVyIE1hdW5hIEtlYSBhdWYgSGF3YWlpLCBkZXIgc2VpbmVuIFVyc3BydW5nIGF1ZiBkZW0gR3J1bmQgZGVzIE96ZWFucyBoYXQsIG1pdCBldHdhIDEwLjIxMCBNZXRlcm4gKDMzLjUwMCBGdVx1MDBkZikgd2VpdCBoXHUwMGY2aGVyIGFscyBkZXIgRXZlcmVzdC4gVm9tIE1lZXJlc3NwaWVnZWwgYXVzIGdlbWVzc2VuLCBlcnJlaWNodCBkZXIgTWF1bmEgS2VhIG51ciBldHdhIDQuMjAwIE1ldGVyICgxMy44MDAgRnVcdTAwZGYpLiBEZXIgTW91bnQgRXZlcmVzdCB3aXJkIGFtIGJlc3RlbiBhbHMgZGVyIGhcdTAwZjZjaHN0ZSBCZXJnIGRlciBXZWx0IGJlemVpY2huZXQuIE1pdCBhbmRlcmVuIFdvcnRlbjogRXIgaXN0IG1pdCBtZWhyIGFscyA4Ljg1MCBNZXRlcm4gXHUwMGZjYmVyIGRlbSBNZWVyZXNzcGllZ2VsIGRlciBoXHUwMGY2Y2hzdGUgQmVyZy4gQW5kZXJlIEJlcmdlIGVyaGViZW4gamVkb2NoIGRlbiBBbnNwcnVjaCwgZGllIGhcdTAwZjZjaHN0ZW4gQmVyZ2UgenUgc2Vpbiwgd2VubiBzaWUgdm9uIGFuZGVyZW4gUHVua3RlbiBhbHMgZGVtIE1lZXJlc3NwaWVnZWwgYXVzIGdlbWVzc2VuIHdlcmRlbi4gRGVyIENoaW1ib3Jhem8gaW4gRWN1YWRvciB3aXJkIGJlaXNwaWVsc3dlaXNlIGFscyBkZXIgaFx1MDBmNmNoc3RlIEdpcGZlbCBnZW5hbm50LCB3ZW5uIGVyIHZvbSBNaXR0ZWxwdW5rdCBkZXIgRXJkZSBhdXMgZ2VtZXNzZW4gd2lyZC4gTWl0IGVpbmVyIEhcdTAwZjZoZSB2b24gbWVociBhbHMgNi4wMDAgTWV0ZXJuICgyMC4wMDAgRnVcdTAwZGYpIGlzdCBlciBqZWRvY2ggbmllZHJpZ2VyIGFscyBkZXIgRXZlcmVzdC4gQWJlciBkZXIgQ2hpbWJvcmF6byBiZWZpbmRldCBzaWNoIGluIGRlciBOXHUwMGU0aGUuPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoxMCwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjY4NDEiLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoibWVkaXVtIiwiZGlzcGxheW9uIjpbImRlc2t0b3AiXSwiYWx0ZXJuYXRlcyI6W3siX2lkIjoiMjY4NDIiLCJpbmRleCI6MCwidGl0bGUiOiIiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwiZm9udFNpemUiOiIzMiIsImxpbmVIZWlnaHQiOiIzNiIsImxldHRlclNwYWNpbmciOiIwLjAyNWVtIiwiaGVpZ2h0QWRkaXRpb24iOjUsInBhZGRpbmdsciI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJSZWd1bGFyIiwiaW5kZXgiOjAsInRleHQiOiI8cD5TYW5kLCBtaW5lcmFsLCByb2NrLCBvciBzb2lsIHBhcnRpY2xlcyB0aGF0IHJhbmdlIGluIGRpYW1ldGVyIGZyb20gMC4wMiB0byAyIG1tICgwLjAwMDhcdTIwMTMwLjA4IGluY2gpLiBNb3N0IG9mIHRoZSByb2NrLWZvcm1pbmcgbWluZXJhbHMgdGhhdCBvY2N1ciBvbiB0aGUgRWFydGhcdTIwMTlzIHN1cmZhY2UgYXJlIGZvdW5kIGluIHNhbmQsIGJ1dCBvbmx5IGEgbGltaXRlZCBudW1iZXIgYXJlIGNvbW1vbiBpbiB0aGlzIGZvcm0uIEFsdGhvdWdoIGluIHNvbWUgbG9jYWxpdGllcyBmZWxkc3BhciwgY2FsY2FyZW91cyBtYXRlcmlhbCwgaXJvbiBvcmVzLCBhbmQgdm9sY2FuaWMgZ2xhc3MgYXJlIGRvbWluYW50IGNvbnN0aXR1ZW50cyBvZiBzYW5kLCBxdWFydHogaXMgYnkgZmFyIHRoZSBjb21tb25lc3QsIGZvciBzZXZlcmFsIHJlYXNvbnM6IGl0IGlzIGFidW5kYW50IGluIHJvY2tzLCBpcyBjb21wYXJhdGl2ZWx5IGhhcmQsIGhhcyBwcmFjdGljYWxseSBubyBjbGVhdmFnZSBzbyB0aGF0IGl0IGlzIG5vdCByZWFkaWx5IHdvcm4gZG93biwgaXMgbmVhcmx5IGluc29sdWJsZSBpbiB3YXRlciwgYW5kIGRvZXMgbm90IGRlY29tcG9zZS4gTW9zdCBxdWFydHpvc2Ugc2FuZHMgY29udGFpbiBhIHNtYWxsIHF1YW50aXR5IG9mIGZlbGRzcGFyLCBhcyB3ZWxsIGFzIHNtYWxsIHBsYXRlcyBvZiB3aGl0ZSBtaWNhLCB3aGljaCwgdGhvdWdoIHNvZnQsIGRlY29tcG9zZSBzbG93bHkuIEFsbCBzYW5kcyBjb250YWluIHNtYWxsIHF1YW50aXRpZXMgb2YgaGVhdnkgcm9jay1mb3JtaW5nIG1pbmVyYWxzLCBpbmNsdWRpbmcgZ2FybmV0LCB0b3VybWFsaW5lLCB6aXJjb24sIHJ1dGlsZSwgdG9wYXosIHB5cm94ZW5lcywgYW5kIGFtcGhpYm9sZXMuIEluIHNvbWUgc2hvcmUgYW5kIHJpdmVyIHNhbmRzIHRoZXNlIGhlYXZpZXIgY29uc3RpdHVlbnRzLCBhcyB3ZWxsIGFzIHNvbWUgb2YgdGhlIGhlYXZ5IG5hdGl2ZSBlbGVtZW50cywgYmVjb21lIGNvbmNlbnRyYXRlZCBhcyBhIHJlc3VsdCBvZiBzb3J0aW5nIGJ5IGN1cnJlbnRzIGFuZCB0aGUgcmVtb3ZhbCBvZiB0aGUgbGlnaHRlciBjb25zdGl0dWVudHMuIFN1Y2ggcGxhY2VyIHNhbmRzIG1heSBiZSBlY29ub21pY2FsbHkgdmFsdWFibGUgZGVwb3NpdHMgd29ya2VkIGZvciBkaWFtb25kcyBhbmQgb3RoZXIgZ2Vtc3RvbmVzLCBnb2xkLCBwbGF0aW51bSwgdGluLCBtb25heml0ZSwgYW5kIG90aGVyIG9yZXMuIEdyZWVuc2FuZHMsIHdpZGVseSBkaXN0cmlidXRlZCBvdmVyIHRoZSBmbG9vciBvZiB0aGUgb2NlYW4gYW5kIGZvdW5kIGluIGFuY2llbnQgc3RyYXRhIG9uIHRoZSBjb250aW5lbnRzLCBvd2UgdGhlaXIgY29sb3VyIHRvIHRoZSBwcmVzZW5jZSBvZiBnbGF1Y29uaXRlLCBhIHBvdGFzaC1iZWFyaW5nIG1pbmVyYWw7IHRoZXNlIHNhbmRzIGFyZSB1c2VkIGZvciB3YXRlciBzb2Z0ZW5lcnMuPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoxMiwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjY4NDMiLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoibWVkaXVtIiwiZGlzcGxheW9uIjpbImRlc2t0b3AiLCJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W3siX2lkIjoiMjY4NDQiLCJpbmRleCI6MCwidGl0bGUiOiIiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwiZm9udFNpemUiOiIyNCIsImxpbmVIZWlnaHQiOiIyOCIsImxldHRlclNwYWNpbmciOiIwLjAzZW0iLCJoZWlnaHRBZGRpdGlvbiI6MCwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiJ9XSwiY29udGVudHMiOltdLCJ0aXRsZSI6IlJlZ3VsYXIiLCJpbmRleCI6MCwidGV4dCI6IjxwPkF0b206IFRoZSBiYXNpYyBidWlsZGluZyBibG9jayBvZiBhbGwgbWF0dGVyIGFuZCBjaGVtaXN0cnkgbWVhc3VyZXMgMCwxXHUyMDEzMCw1IE5hbm9tZXRlci4gQXRvbXMgY2FuIGNvbWJpbmUgd2l0aCBvdGhlciBhdG9tcyB0byBmb3JtIG1vbGVjdWxlcyBidXQgY2Fubm90IGJlIGRpdmlkZWQgaW50byBzbWFsbGVyIHBhcnRzIGJ5IG9yZGluYXJ5IGNoZW1pY2FsIHByb2Nlc3Nlcy4gRXhwbG9yZSBhbiBhdG9tXHUyMDE5cyBpbnRlcmlvciB0byBkaXNjb3ZlciB0aGUgbGF5b3V0IG9mIGl0cyBudWNsZXVzLCBwcm90b25zLCBhbmQgZWxlY3Ryb25zIEV4cGxvcmUgYW4gYXRvbVx1MjAxOXMgaW50ZXJpb3IgdG8gZGlzY292ZXIgdGhlIGxheW91dCBvZiBpdHMgbnVjbGV1cywgcHJvdG9ucywgYW5kIGVsZWN0cm9ucy4gTW9zdCBvZiB0aGUgYXRvbSBpcyBlbXB0eSBzcGFjZS4gVGhlIHJlc3QgY29uc2lzdHMgb2YgdGhyZWUgYmFzaWMgdHlwZXMgb2Ygc3ViYXRvbWljIHBhcnRpY2xlczogcHJvdG9ucywgbmV1dHJvbnMsIGFuZCBlbGVjdHJvbnMuIFRoZSBwcm90b25zIGFuZCBuZXV0cm9ucyBmb3JtIHRoZSBhdG9tXHUyMDE5cyBjZW50cmFsIG51Y2xldXMuIChUaGUgb3JkaW5hcnkgaHlkcm9nZW4gYXRvbSBpcyBhbiBleGNlcHRpb247IGl0IGNvbnRhaW5zIG9uZSBwcm90b24gYnV0IG5vIG5ldXRyb25zLikgQXMgdGhlaXIgbmFtZXMgc3VnZ2VzdCwgcHJvdG9ucyBoYXZlIGEgcG9zaXRpdmUgZWxlY3RyaWNhbCBjaGFyZ2UsIHdoaWxlIG5ldXRyb25zIGFyZSBlbGVjdHJpY2FsbHkgbmV1dHJhbCBcdTIwMTMgdGhleSBjYXJyeSBubyBjaGFyZ2U7IG92ZXJhbGwsIHRoZW4sIHRoZSBudWNsZXVzIGhhcyBhIHBvc2l0aXZlIGNoYXJnZS4gQ2lyY2xpbmcgdGhlIG51Y2xldXMgaXMgYSBjbG91ZCBvZiBlbGVjdHJvbnMsIHdoaWNoIGFyZSBuZWdhdGl2ZWx5IGNoYXJnZWQuIExpa2Ugb3Bwb3NpdGUgZW5kcyBvZiBhIG1hZ25ldCB0aGF0IGF0dHJhY3Qgb25lIGFub3RoZXIsIHRoZSBuZWdhdGl2ZSBlbGVjdHJvbnMgYXJlIGF0dHJhY3RlZCB0byBhIHBvc2l0aXZlIGZvcmNlLCB3aGljaCBiaW5kcyB0aGVtIHRvIHRoZSBudWNsZXVzLiBUaGUgbnVjbGV1cyBpcyBzbWFsbCBhbmQgZGVuc2UgY29tcGFyZWQgd2l0aCB0aGUgZWxlY3Ryb25zLCB3aGljaCBhcmUgdGhlIGxpZ2h0ZXN0IGNoYXJnZWQgcGFydGljbGVzIGluIG5hdHVyZS4gVGhlIGVsZWN0cm9ucyBjaXJjbGUgdGhlIG51Y2xldXMgaW4gb3JiaXRhbCBwYXRocyBjYWxsZWQgc2hlbGxzLCBlYWNoIG9mIHdoaWNoIGhvbGRzIG9ubHkgYSBjZXJ0YWluIG51bWJlciBvZiBlbGVjdHJvbnMuIEludmVzdGlnYXRlIHZhcnlpbmcgZWxlY3Ryb24gY29uZmlndXJhdGlvbnMgaW4gZWxlY3Ryb24gc2hlbGxzIGFyb3VuZCBhbiBhdG9tXHUyMDE5cyBudWNsZXVzIEludmVzdGlnYXRlIHZhcnlpbmcgZWxlY3Ryb24gY29uZmlndXJhdGlvbnMgaW4gZWxlY3Ryb24gc2hlbGxzIGFyb3VuZCBhbiBhdG9tXHUyMDE5cyBudWNsZXVzU2VlIGFsbCB2aWRlb3MgZm9yIHRoaXMgYXJ0aWNsZSBBbiBvcmRpbmFyeSwgbmV1dHJhbCBhdG9tIGhhcyBhbiBlcXVhbCBudW1iZXIgb2YgcHJvdG9ucyAoaW4gdGhlIG51Y2xldXMpIGFuZCBlbGVjdHJvbnMgKHN1cnJvdW5kaW5nIHRoZSBudWNsZXVzKS4gVGh1cyB0aGUgcG9zaXRpdmUgYW5kIG5lZ2F0aXZlIGNoYXJnZXMgYXJlIGJhbGFuY2VkLiBTb21lIGF0b21zLCBob3dldmVyLCBsb3NlIG9yIGdhaW4gZWxlY3Ryb25zIGluIGNoZW1pY2FsIHJlYWN0aW9ucyBvciBpbiBjb2xsaXNpb25zIHdpdGggb3RoZXIgcGFydGljbGVzLiBPcmRpbmFyeSBhdG9tcyB0aGF0IGVpdGhlciBnYWluIG9yIGxvc2UgZWxlY3Ryb25zIGFyZSBjYWxsZWQgaW9ucy4gSWYgYSBuZXV0cmFsIGF0b20gbG9zZXMgYW4gZWxlY3Ryb24sIGl0IGJlY29tZXMgYSBwb3NpdGl2ZSBpb24uIElmIGl0IGdhaW5zIGFuIGVsZWN0cm9uLCBpdCBiZWNvbWVzIGEgbmVnYXRpdmUgaW9uLiBUaGVzZSBiYXNpYyBzdWJhdG9taWMgcGFydGljbGVzIFx1MjAxMyBwcm90b25zLCBuZXV0cm9ucywgYW5kIGVsZWN0cm9ucyBcdTIwMTMgYXJlIHRoZW1zZWx2ZXMgbWFkZSB1cCBvZiBzbWFsbGVyIHN1YnN0YW5jZXMsIHN1Y2ggYXMgcXVhcmtzIGFuZCBsZXB0b25zLiZuYnNwO0F0b20sIHRoZSBiYXNpYyBidWlsZGluZyBibG9jayBvZiBhbGwgbWF0dGVyIGFuZCBjaGVtaXN0cnkgbWVhc3VyZXMgMCwxXHUyMDEzMCw1IE5hbm9tZXRlci4gQXRvbXMgY2FuIGNvbWJpbmUgd2l0aCBvdGhlciBhdG9tcyB0byBmb3JtIG1vbGVjdWxlcyBidXQgY2Fubm90IGJlIGRpdmlkZWQgaW50byBzbWFsbGVyIHBhcnRzIGJ5IG9yZGluYXJ5IGNoZW1pY2FsIHByb2Nlc3Nlcy4gRXhwbG9yZSBhbiBhdG9tXHUyMDE5cyBpbnRlcmlvciB0byBkaXNjb3ZlciB0aGUgbGF5b3V0IG9mIGl0cyBudWNsZXVzLCBwcm90b25zLCBhbmQgZWxlY3Ryb25zIEV4cGxvcmUgYW4gYXRvbVx1MjAxOXMgaW50ZXJpb3IgdG8gZGlzY292ZXIgdGhlIGxheW91dCBvZiBpdHMgbnVjbGV1cywgcHJvdG9ucywgYW5kIGVsZWN0cm9ucy4gTW9zdCBvZiB0aGUgYXRvbSBpcyBlbXB0eSBzcGFjZS4gVGhlIHJlc3QgY29uc2lzdHMgb2YgdGhyZWUgYmFzaWMgdHlwZXMgb2Ygc3ViYXRvbWljIHBhcnRpY2xlczogcHJvdG9ucywgbmV1dHJvbnMsIGFuZCBlbGVjdHJvbnMuIFRoZSBwcm90b25zIGFuZCBuZXV0cm9ucyBmb3JtIHRoZSBhdG9tXHUyMDE5cyBjZW50cmFsIG51Y2xldXMuIChUaGUgb3JkaW5hcnkgaHlkcm9nZW4gYXRvbSBpcyBhbiBleGNlcHRpb247IGl0IGNvbnRhaW5zIG9uZSBwcm90b24gYnV0IG5vIG5ldXRyb25zLikgQXMgdGhlaXIgbmFtZXMgc3VnZ2VzdCwgcHJvdG9ucyBoYXZlIGEgcG9zaXRpdmUgZWxlY3RyaWNhbCBjaGFyZ2UsIHdoaWxlIG5ldXRyb25zIGFyZSBlbGVjdHJpY2FsbHkgbmV1dHJhbCBcdTIwMTMgdGhleSBjYXJyeSBubyBjaGFyZ2U7IG92ZXJhbGwsIHRoZW4sIHRoZSBudWNsZXVzIGhhcyBhIHBvc2l0aXZlIGNoYXJnZS4gQ2lyY2xpbmcgdGhlIG51Y2xldXMgaXMgYSBjbG91ZCBvZiBlbGVjdHJvbnMsIHdoaWNoIGFyZSBuZWdhdGl2ZWx5IGNoYXJnZWQuIExpa2Ugb3Bwb3NpdGUgZW5kcyBvZiBhIG1hZ25ldCB0aGF0IGF0dHJhY3Qgb25lIGFub3RoZXIsIHRoZSBuZWdhdGl2ZSBlbGVjdHJvbnMgYXJlIGF0dHJhY3RlZCB0byBhIHBvc2l0aXZlIGZvcmNlLCB3aGljaCBiaW5kcyB0aGVtIHRvIHRoZSBudWNsZXVzLiBUaGUgbnVjbGV1cyBpcyBzbWFsbCBhbmQgZGVuc2UgY29tcGFyZWQgd2l0aCB0aGUgZWxlY3Ryb25zLCB3aGljaCBhcmUgdGhlIGxpZ2h0ZXN0IGNoYXJnZWQgcGFydGljbGVzIGluIG5hdHVyZS4gVGhlIGVsZWN0cm9ucyBjaXJjbGUgdGhlIG51Y2xldXMgaW4gb3JiaXRhbCBwYXRocyBjYWxsZWQgc2hlbGxzLCBlYWNoIG9mIHdoaWNoIGhvbGRzIG9ubHkgYSBjZXJ0YWluIG51bWJlciBvZiBlbGVjdHJvbnMuIEludmVzdGlnYXRlIHZhcnlpbmcgZWxlY3Ryb24gY29uZmlndXJhdGlvbnMgaW4gZWxlY3Ryb24gc2hlbGxzIGFyb3VuZCBhbiBhdG9tXHUyMDE5cyBudWNsZXVzIEludmVzdGlnYXRlIHZhcnlpbmcgZWxlY3Ryb24gY29uZmlndXJhdGlvbnMgaW4gZWxlY3Ryb24gc2hlbGxzIGFyb3VuZCBhbiBhdG9tXHUyMDE5cyBudWNsZXVzU2VlIGFsbCB2aWRlb3MgZm9yIHRoaXMgYXJ0aWNsZSBBbiBvcmRpbmFyeSwgbmV1dHJhbCBhdG9tIGhhcyBhbiBlcXVhbCBudW1iZXIgb2YgcHJvdG9ucyAoaW4gdGhlIG51Y2xldXMpIGFuZCBlbGVjdHJvbnMgKHN1cnJvdW5kaW5nIHRoZSBudWNsZXVzKS4gVGh1cyB0aGUgcG9zaXRpdmUgYW5kIG5lZ2F0aXZlIGNoYXJnZXMgYXJlIGJhbGFuY2VkLiBTb21lIGF0b21zLCBob3dldmVyLCBsb3NlIG9yIGdhaW4gZWxlY3Ryb25zIGluIGNoZW1pY2FsIHJlYWN0aW9ucyBvciBpbiBjb2xsaXNpb25zIHdpdGggb3RoZXIgcGFydGljbGVzLiBPcmRpbmFyeSBhdG9tcyB0aGF0IGVpdGhlciBnYWluIG9yIGxvc2UgZWxlY3Ryb25zIGFyZSBjYWxsZWQgaW9ucy4gSWYgYSBuZXV0cmFsIGF0b20gbG9zZXMgYW4gZWxlY3Ryb24sIGl0IGJlY29tZXMgYSBwb3NpdGl2ZSBpb24uIElmIGl0IGdhaW5zIGFuIGVsZWN0cm9uLCBpdCBiZWNvbWVzIGEgbmVnYXRpdmUgaW9uLiBUaGVzZSBiYXNpYyBzdWJhdG9taWMgcGFydGljbGVzIFx1MjAxMyBwcm90b25zLCBuZXV0cm9ucywgYW5kIGVsZWN0cm9ucyBcdTIwMTMgYXJlIHRoZW1zZWx2ZXMgbWFkZSB1cCBvZiBzbWFsbGVyIHN1YnN0YW5jZXMsIHN1Y2ggYXMgcXVhcmtzIGFuZCBsZXB0b25zLjxcL3A+IiwiY29sb3IiOiIiLCJiYWNrZ3JvdW5kQ29sb3IiOiIiLCJudW1MaW5lcyI6MTUsImZpcnN0T2ZUaHJlZSI6bnVsbH0seyJpZCI6IjI2ODQ1IiwidHlwZSI6InRleHQiLCJ3aWR0aCI6InNtYWxsIiwiZGlzcGxheW9uIjpbImRlc2t0b3AiXSwiYWx0ZXJuYXRlcyI6W3siX2lkIjoiMjY4NDYiLCJpbmRleCI6MCwidGl0bGUiOiIiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwiZm9udFNpemUiOiIxOCIsImxpbmVIZWlnaHQiOiIyMi41IiwibGV0dGVyU3BhY2luZyI6IjAuMDNlbSIsImhlaWdodEFkZGl0aW9uIjowLCJwYWRkaW5nbHIiOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiXCJzczAxXCIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJSZWd1bGFyIiwiaW5kZXgiOjAsInRleHQiOiI8cD5HYW1tYSByYXk6Jm5ic3A7MCwwMSBOYW5vbWV0ZXIsIGVsZWN0cm9tYWduZXRpYyByYWRpYXRpb24gb2YgdGhlIHNob3J0ZXN0IHdhdmVsZW5ndGggYW5kIGhpZ2hlc3QgZW5lcmd5LiBHYW1tYSByYXlzIGFyZSBwcm9kdWNlZCBpbiB0aGUgZGlzaW50ZWdyYXRpb24gb2YgcmFkaW9hY3RpdmUgYXRvbWljIG51Y2xlaSBhbmQgaW4gdGhlIGRlY2F5IG9mIGNlcnRhaW4gc3ViYXRvbWljIHBhcnRpY2xlcy4gVGhlIGNvbW1vbmx5IGFjY2VwdGVkIGRlZmluaXRpb25zIG9mIHRoZSBnYW1tYS1yYXkgYW5kIFgtcmF5IHJlZ2lvbnMgb2YgdGhlIGVsZWN0cm9tYWduZXRpYyBzcGVjdHJ1bSBpbmNsdWRlIHNvbWUgd2F2ZWxlbmd0aCBvdmVybGFwLCB3aXRoIGdhbW1hLXJheSByYWRpYXRpb24gaGF2aW5nIHdhdmVsZW5ndGhzIHRoYXQgYXJlIGdlbmVyYWxseSBzaG9ydGVyIHRoYW4gYSBmZXcgdGVudGhzIG9mIGFuIGFuZ3N0cm9tICgxMFx1MjIxMjEwIG1ldHJlKSBhbmQgZ2FtbWEtcmF5IHBob3RvbnMgaGF2aW5nIGVuZXJnaWVzIHRoYXQgYXJlIGdyZWF0ZXIgdGhhbiB0ZW5zIG9mIHRob3VzYW5kcyBvZiBlbGVjdHJvbiB2b2x0cyAoZVYpLiBUaGVyZSBpcyBubyB0aGVvcmV0aWNhbCB1cHBlciBsaW1pdCB0byB0aGUgZW5lcmdpZXMgb2YgZ2FtbWEtcmF5IHBob3RvbnMgYW5kIG5vIGxvd2VyIGxpbWl0IHRvIGdhbW1hLXJheSB3YXZlbGVuZ3Roczsgb2JzZXJ2ZWQgZW5lcmdpZXMgcHJlc2VudGx5IGV4dGVuZCB1cCB0byBhIGZldyB0cmlsbGlvbiBlbGVjdHJvbiB2b2x0cyBcdTIwMTMgdGhlc2UgZXh0cmVtZWx5IGhpZ2gtZW5lcmd5IHBob3RvbnMgYXJlIHByb2R1Y2VkIGluIGFzdHJvbm9taWNhbCBzb3VyY2VzIHRocm91Z2ggY3VycmVudGx5IHVuaWRlbnRpZmllZCBtZWNoYW5pc21zLiBUaGUgdGVybSBnYW1tYSByYXkgd2FzIGNvaW5lZCBieSBCcml0aXNoIHBoeXNpY2lzdCBFcm5lc3QgUnV0aGVyZm9yZCBpbiAxOTAzIGZvbGxvd2luZyBlYXJseSBzdHVkaWVzIG9mIHRoZSBlbWlzc2lvbnMgb2YgcmFkaW9hY3RpdmUgbnVjbGVpLiBKdXN0IGFzIGF0b21zIGhhdmUgZGlzY3JldGUgZW5lcmd5IGxldmVscyBhc3NvY2lhdGVkIHdpdGggZGlmZmVyZW50IGNvbmZpZ3VyYXRpb25zIG9mIHRoZSBvcmJpdGluZyBlbGVjdHJvbnMsIGF0b21pYyBudWNsZWkgaGF2ZSBlbmVyZ3kgbGV2ZWwgc3RydWN0dXJlcyBkZXRlcm1pbmVkIGJ5IHRoZSBjb25maWd1cmF0aW9ucyBvZiB0aGUgcHJvdG9ucyBhbmQgbmV1dHJvbnMgdGhhdCBjb25zdGl0dXRlIHRoZSBudWNsZWkuIFdoaWxlIGVuZXJneSBkaWZmZXJlbmNlcyBiZXR3ZWVuIGF0b21pYyBlbmVyZ3kgbGV2ZWxzIGFyZSB0eXBpY2FsbHkgaW4gdGhlIDEtIHRvIDEwLWVWIHJhbmdlLCBlbmVyZ3kgZGlmZmVyZW5jZXMgaW4gbnVjbGVpIHVzdWFsbHkgZmFsbCBpbiB0aGUgMS1rZVYgKHRob3VzYW5kIGVsZWN0cm9uIHZvbHRzKSB0byAxMC1NZVYgKG1pbGxpb24gZWxlY3Ryb24gdm9sdHMpIHJhbmdlLiBXaGVuIGEgbnVjbGV1cyBtYWtlcyBhIHRyYW5zaXRpb24gZnJvbSBhIGhpZ2gtZW5lcmd5IGxldmVsIHRvIGEgbG93ZXItZW5lcmd5IGxldmVsLCBhIHBob3RvbiBpcyBlbWl0dGVkIHRvIGNhcnJ5IG9mZiB0aGUgZXhjZXNzIGVuZXJneTsgbnVjbGVhciBlbmVyZ3ktbGV2ZWwgZGlmZmVyZW5jZXMgY29ycmVzcG9uZCB0byBwaG90b24gd2F2ZWxlbmd0aHMgaW4gdGhlIGdhbW1hLXJheSByZWdpb24uJm5ic3A7R2FtbWEgcmF5LCAwLDAxIE5hbm9tZXRlciwgZWxlY3Ryb21hZ25ldGljIHJhZGlhdGlvbiBvZiB0aGUgc2hvcnRlc3Qgd2F2ZWxlbmd0aCBhbmQgaGlnaGVzdCBlbmVyZ3kuIEdhbW1hIHJheXMgYXJlIHByb2R1Y2VkIGluIHRoZSBkaXNpbnRlZ3JhdGlvbiBvZiByYWRpb2FjdGl2ZSBhdG9taWMgbnVjbGVpIGFuZCBpbiB0aGUgZGVjYXkgb2YgY2VydGFpbiBzdWJhdG9taWMgcGFydGljbGVzLiBUaGUgY29tbW9ubHkgYWNjZXB0ZWQgZGVmaW5pdGlvbnMgb2YgdGhlIGdhbW1hLXJheSBhbmQgWC1yYXkgcmVnaW9ucyBvZiB0aGUgZWxlY3Ryb21hZ25ldGljIHNwZWN0cnVtIGluY2x1ZGUgc29tZSB3YXZlbGVuZ3RoIG92ZXJsYXAsIHdpdGggZ2FtbWEtcmF5IHJhZGlhdGlvbiBoYXZpbmcgd2F2ZWxlbmd0aHMgdGhhdCBhcmUgZ2VuZXJhbGx5IHNob3J0ZXIgdGhhbiBhIGZldyB0ZW50aHMgb2YgYW4gYW5nc3Ryb20gKDEwXHUyMjEyMTAgbWV0cmUpIGFuZCBnYW1tYS1yYXkgcGhvdG9ucyBoYXZpbmcgZW5lcmdpZXMgdGhhdCBhcmUgZ3JlYXRlciB0aGFuIHRlbnMgb2YgdGhvdXNhbmRzIG9mIGVsZWN0cm9uIHZvbHRzIChlVikuIFRoZXJlIGlzIG5vIHRoZW9yZXRpY2FsIHVwcGVyIGxpbWl0IHRvIHRoZSBlbmVyZ2llcyBvZiBnYW1tYS1yYXkgcGhvdG9ucyBhbmQgbm8gbG93ZXIgbGltaXQgdG8gZ2FtbWEtcmF5IHdhdmVsZW5ndGhzOyBvYnNlcnZlZCBlbmVyZ2llcyBwcmVzZW50bHkgZXh0ZW5kIHVwIHRvIGEgZmV3IHRyaWxsaW9uIGVsZWN0cm9uIHZvbHRzIFx1MjAxMyB0aGVzZSBleHRyZW1lbHkgaGlnaC1lbmVyZ3kgcGhvdG9ucyBhcmUgcHJvZHVjZWQgaW4gYXN0cm9ub21pY2FsIHNvdXJjZXMgdGhyb3VnaCBjdXJyZW50bHkgdW5pZGVudGlmaWVkIG1lY2hhbmlzbXMuIFRoZSB0ZXJtIGdhbW1hIHJheSB3YXMgY29pbmVkIGJ5IEJyaXRpc2ggcGh5c2ljaXN0IEVybmVzdCBSdXRoZXJmb3JkIGluIDE5MDMgZm9sbG93aW5nIGVhcmx5IHN0dWRpZXMgb2YgdGhlIGVtaXNzaW9ucyBvZiByYWRpb2FjdGl2ZSBudWNsZWkuIEp1c3QgYXMgYXRvbXMgaGF2ZSBkaXNjcmV0ZSBlbmVyZ3kgbGV2ZWxzIGFzc29jaWF0ZWQgd2l0aCBkaWZmZXJlbnQgY29uZmlndXJhdGlvbnMgb2YgdGhlIG9yYml0aW5nIGVsZWN0cm9ucywgYXRvbWljIG51Y2xlaSBoYXZlIGVuZXJneSBsZXZlbCBzdHJ1Y3R1cmVzIGRldGVybWluZWQgYnkgdGhlIGNvbmZpZ3VyYXRpb25zIG9mIHRoZSBwcm90b25zIGFuZCBuZXV0cm9ucyB0aGF0IGNvbnN0aXR1dGUgdGhlIG51Y2xlaS4gV2hpbGUgZW5lcmd5IGRpZmZlcmVuY2VzIGJldHdlZW4gYXRvbWljIGVuZXJneSBsZXZlbHMgYXJlIHR5cGljYWxseSBpbiB0aGUgMS0gdG8gMTAtZVYgcmFuZ2UsIGVuZXJneSBkaWZmZXJlbmNlcyBpbiBudWNsZWkgdXN1YWxseSBmYWxsIGluIHRoZSAxLWtlViAodGhvdXNhbmQgZWxlY3Ryb24gdm9sdHMpIHRvIDEwLU1lViAobWlsbGlvbiBlbGVjdHJvbiB2b2x0cykgcmFuZ2UuIFdoZW4gYSBudWNsZXVzIG1ha2VzIGEgdHJhbnNpdGlvbiBmcm9tIGEgaGlnaC1lbmVyZ3kgbGV2ZWwgdG8gYSBsb3dlci1lbmVyZ3kgbGV2ZWwsIGEgcGhvdG9uIGlzIGVtaXR0ZWQgdG8gY2Fycnkgb2ZmIHRoZSBleGNlc3MgZW5lcmd5OyBudWNsZWFyIGVuZXJneS1sZXZlbCBkaWZmZXJlbmNlcyBjb3JyZXNwb25kIHRvIHBob3RvbiB3YXZlbGVuZ3RocyBpbiB0aGUgZ2FtbWEtcmF5IHJlZ2lvbi48XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjE5LCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyODY4NSIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJzbWFsbCIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W3siX2lkIjoiMjg2ODYiLCJpbmRleCI6MCwidGl0bGUiOiIiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTUyNzMnIiwiZm9udFNpemUiOiIxOCIsImxpbmVIZWlnaHQiOiIyMi41IiwibGV0dGVyU3BhY2luZyI6IjAuMDNlbSIsImhlaWdodEFkZGl0aW9uIjotNiwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6Ilwic3MwMVwiIn1dLCJjb250ZW50cyI6W10sInRpdGxlIjoiUmVndWxhciIsImluZGV4IjowLCJ0ZXh0IjoiPHA+R2FtbWEgcmF5OiZuYnNwOzAsMDEgTmFub21ldGVyLCBlbGVjdHJvbWFnbmV0aWMgcmFkaWF0aW9uIG9mIHRoZSBzaG9ydGVzdCB3YXZlbGVuZ3RoIGFuZCBoaWdoZXN0IGVuZXJneS4gR2FtbWEgcmF5cyBhcmUgcHJvZHVjZWQgaW4gdGhlIGRpc2ludGVncmF0aW9uIG9mIHJhZGlvYWN0aXZlIGF0b21pYyBudWNsZWkgYW5kIGluIHRoZSBkZWNheSBvZiBjZXJ0YWluIHN1YmF0b21pYyBwYXJ0aWNsZXMuIFRoZSBjb21tb25seSBhY2NlcHRlZCBkZWZpbml0aW9ucyBvZiB0aGUgZ2FtbWEtcmF5IGFuZCBYLXJheSByZWdpb25zIG9mIHRoZSBlbGVjdHJvbWFnbmV0aWMgc3BlY3RydW0gaW5jbHVkZSBzb21lIHdhdmVsZW5ndGggb3ZlcmxhcCwgd2l0aCBnYW1tYS1yYXkgcmFkaWF0aW9uIGhhdmluZyB3YXZlbGVuZ3RocyB0aGF0IGFyZSBnZW5lcmFsbHkgc2hvcnRlciB0aGFuIGEgZmV3IHRlbnRocyBvZiBhbiBhbmdzdHJvbSAoMTBcdTIyMTIxMCBtZXRyZSkgYW5kIGdhbW1hLXJheSBwaG90b25zIGhhdmluZyBlbmVyZ2llcyB0aGF0IGFyZSBncmVhdGVyIHRoYW4gdGVucyBvZiB0aG91c2FuZHMgb2YgZWxlY3Ryb24gdm9sdHMgKGVWKS4gVGhlcmUgaXMgbm8gdGhlb3JldGljYWwgdXBwZXIgbGltaXQgdG8gdGhlIGVuZXJnaWVzIG9mIGdhbW1hLXJheSBwaG90b25zIGFuZCBubyBsb3dlciBsaW1pdCB0byBnYW1tYS1yYXkgd2F2ZWxlbmd0aHM7IG9ic2VydmVkIGVuZXJnaWVzIHByZXNlbnRseSBleHRlbmQgdXAgdG8gYSBmZXcgdHJpbGxpb24gZWxlY3Ryb24gdm9sdHMgXHUyMDEzIHRoZXNlIGV4dHJlbWVseSBoaWdoLWVuZXJneSBwaG90b25zIGFyZSBwcm9kdWNlZCBpbiBhc3Ryb25vbWljYWwgc291cmNlcyB0aHJvdWdoIGN1cnJlbnRseSB1bmlkZW50aWZpZWQgbWVjaGFuaXNtcy4gVGhlIHRlcm0gZ2FtbWEgcmF5IHdhcyBjb2luZWQgYnkgQnJpdGlzaCBwaHlzaWNpc3QgRXJuZXN0IFJ1dGhlcmZvcmQgaW4gMTkwMyBmb2xsb3dpbmcgZWFybHkgc3R1ZGllcyBvZiB0aGUgZW1pc3Npb25zIG9mIHJhZGlvYWN0aXZlIG51Y2xlaS4gSnVzdCBhcyBhdG9tcyBoYXZlIGRpc2NyZXRlIGVuZXJneSBsZXZlbHMgYXNzb2NpYXRlZCB3aXRoIGRpZmZlcmVudCBjb25maWd1cmF0aW9ucyBvZiB0aGUgb3JiaXRpbmcgZWxlY3Ryb25zLCBhdG9taWMgbnVjbGVpIGhhdmUgZW5lcmd5IGxldmVsIHN0cnVjdHVyZXMgZGV0ZXJtaW5lZCBieSB0aGUgY29uZmlndXJhdGlvbnMgb2YgdGhlIHByb3RvbnMgYW5kIG5ldXRyb25zIHRoYXQgY29uc3RpdHV0ZSB0aGUgbnVjbGVpLiBXaGlsZSBlbmVyZ3kgZGlmZmVyZW5jZXMgYmV0d2VlbiBhdG9taWMgZW5lcmd5IGxldmVscyBhcmUgdHlwaWNhbGx5IGluIHRoZSAxLSB0byAxMC1lViByYW5nZSwgZW5lcmd5IGRpZmZlcmVuY2VzIGluIG51Y2xlaSB1c3VhbGx5IGZhbGwgaW4gdGhlIDEta2VWICh0aG91c2FuZCBlbGVjdHJvbiB2b2x0cykgdG8gMTAtTWVWIChtaWxsaW9uIGVsZWN0cm9uIHZvbHRzKSByYW5nZS4gV2hlbiBhIG51Y2xldXMgbWFrZXMgYSB0cmFuc2l0aW9uIGZyb20gYSBoaWdoLWVuZXJneSBsZXZlbCB0byBhIGxvd2VyLWVuZXJneSBsZXZlbCwgYSBwaG90b24gaXMgZW1pdHRlZCB0byBjYXJyeSBvZmYgdGhlIGV4Y2VzcyBlbmVyZ3k7IG51Y2xlYXIgZW5lcmd5LWxldmVsIGRpZmZlcmVuY2VzIGNvcnJlc3BvbmQgdG8gcGhvdG9uIHdhdmVsZW5ndGhzIGluIHRoZSBnYW1tYS1yYXkgcmVnaW9uLiZuYnNwO0dhbW1hIHJheSwgMCwwMSBOYW5vbWV0ZXIsIGVsZWN0cm9tYWduZXRpYyByYWRpYXRpb24gb2YgdGhlIHNob3J0ZXN0IHdhdmVsZW5ndGggYW5kIGhpZ2hlc3QgZW5lcmd5LiBHYW1tYSByYXlzIGFyZSBwcm9kdWNlZCBpbiB0aGUgZGlzaW50ZWdyYXRpb24gb2YgcmFkaW9hY3RpdmUgYXRvbWljIG51Y2xlaSBhbmQgaW4gdGhlIGRlY2F5IG9mIGNlcnRhaW4gc3ViYXRvbWljIHBhcnRpY2xlcy4gVGhlIGNvbW1vbmx5IGFjY2VwdGVkIGRlZmluaXRpb25zIG9mIHRoZSBnYW1tYS1yYXkgYW5kIFgtcmF5IHJlZ2lvbnMgb2YgdGhlIGVsZWN0cm9tYWduZXRpYyBzcGVjdHJ1bSBpbmNsdWRlIHNvbWUgd2F2ZWxlbmd0aCBvdmVybGFwLCB3aXRoIGdhbW1hLXJheSByYWRpYXRpb24gaGF2aW5nIHdhdmVsZW5ndGhzIHRoYXQgYXJlIGdlbmVyYWxseSBzaG9ydGVyIHRoYW4gYSBmZXcgdGVudGhzIG9mIGFuIGFuZ3N0cm9tICgxMFx1MjIxMjEwIG1ldHJlKSBhbmQgZ2FtbWEtcmF5IHBob3RvbnMgaGF2aW5nIGVuZXJnaWVzIHRoYXQgYXJlIGdyZWF0ZXIgdGhhbiB0ZW5zIG9mIHRob3VzYW5kcyBvZiBlbGVjdHJvbiB2b2x0cyAoZVYpLiBUaGVyZSBpcyBubyB0aGVvcmV0aWNhbCB1cHBlciBsaW1pdCB0byB0aGUgZW5lcmdpZXMgb2YgZ2FtbWEtcmF5IHBob3RvbnMgYW5kIG5vIGxvd2VyIGxpbWl0IHRvIGdhbW1hLXJheSB3YXZlbGVuZ3Roczsgb2JzZXJ2ZWQgZW5lcmdpZXMgcHJlc2VudGx5IGV4dGVuZCB1cCB0byBhIGZldyB0cmlsbGlvbiBlbGVjdHJvbiB2b2x0cyBcdTIwMTMgdGhlc2UgZXh0cmVtZWx5IGhpZ2gtZW5lcmd5IHBob3RvbnMgYXJlIHByb2R1Y2VkIGluIGFzdHJvbm9taWNhbCBzb3VyY2VzIHRocm91Z2ggY3VycmVudGx5IHVuaWRlbnRpZmllZCBtZWNoYW5pc21zLiBUaGUgdGVybSBnYW1tYSByYXkgd2FzIGNvaW5lZCBieSBCcml0aXNoIHBoeXNpY2lzdCBFcm5lc3QgUnV0aGVyZm9yZCBpbiAxOTAzIGZvbGxvd2luZyBlYXJseSBzdHVkaWVzIG9mIHRoZSBlbWlzc2lvbnMgb2YgcmFkaW9hY3RpdmUgbnVjbGVpLiBKdXN0IGFzIGF0b21zIGhhdmUgZGlzY3JldGUgZW5lcmd5IGxldmVscyBhc3NvY2lhdGVkIHdpdGggZGlmZmVyZW50IGNvbmZpZ3VyYXRpb25zIG9mIHRoZSBvcmJpdGluZyBlbGVjdHJvbnMsIGF0b21pYyBudWNsZWkgaGF2ZSBlbmVyZ3kgbGV2ZWwgc3RydWN0dXJlcyBkZXRlcm1pbmVkIGJ5IHRoZSBjb25maWd1cmF0aW9ucyBvZiB0aGUgcHJvdG9ucyBhbmQgbmV1dHJvbnMgdGhhdCBjb25zdGl0dXRlIHRoZSBudWNsZWkuIFdoaWxlIGVuZXJneSBkaWZmZXJlbmNlcyBiZXR3ZWVuIGF0b21pYyBlbmVyZ3kgbGV2ZWxzIGFyZSB0eXBpY2FsbHkgaW4gdGhlIDEtIHRvIDEwLWVWIHJhbmdlLCBlbmVyZ3kgZGlmZmVyZW5jZXMgaW4gbnVjbGVpIHVzdWFsbHkgZmFsbCBpbiB0aGUgMS1rZVYgKHRob3VzYW5kIGVsZWN0cm9uIHZvbHRzKSB0byAxMC1NZVYgKG1pbGxpb24gZWxlY3Ryb24gdm9sdHMpIHJhbmdlLiBXaGVuIGEgbnVjbGV1cyBtYWtlcyBhIHRyYW5zaXRpb24gZnJvbSBhIGhpZ2gtZW5lcmd5IGxldmVsIHRvIGEgbG93ZXItZW5lcmd5IGxldmVsLCBhIHBob3RvbiBpcyBlbWl0dGVkIHRvIGNhcnJ5IG9mZiB0aGUgZXhjZXNzIGVuZXJneTsgbnVjbGVhciBlbmVyZ3ktbGV2ZWwgZGlmZmVyZW5jZXMgY29ycmVzcG9uZCB0byBwaG90b24gd2F2ZWxlbmd0aHMgaW4gdGhlIGdhbW1hLXJheSByZWdpb24uPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoxOSwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjY4NDciLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoic21hbGwiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyNjg0OCIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MyciLCJmb250U2l6ZSI6IjE1IiwibGluZUhlaWdodCI6IjE5IiwibGV0dGVyU3BhY2luZyI6IjAuMDRlbSIsImhlaWdodEFkZGl0aW9uIjotNCwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiJ9XSwiY29udGVudHMiOltdLCJ0aXRsZSI6IlJlZ3VsYXIiLCJpbmRleCI6MCwidGV4dCI6IjxwPlF1YXJrOiAxIFlvY3RvbWV0ZXIsJm5ic3A7YW55IG1lbWJlciBvZiBhIGdyb3VwIG9mIGVsZW1lbnRhcnkgc3ViYXRvbWljIHBhcnRpY2xlcyB0aGF0IGludGVyYWN0IGJ5IG1lYW5zIG9mIHRoZSBzdHJvbmcgZm9yY2UgYW5kIGFyZSBiZWxpZXZlZCB0byBiZSBhbW9uZyB0aGUgZnVuZGFtZW50YWwgY29uc3RpdHVlbnRzIG9mIG1hdHRlci4gUXVhcmtzIGFzc29jaWF0ZSB3aXRoIG9uZSBhbm90aGVyIHZpYSB0aGUgc3Ryb25nIGZvcmNlIHRvIG1ha2UgdXAgcHJvdG9ucyBhbmQgbmV1dHJvbnMsIGluIG11Y2ggdGhlIHNhbWUgd2F5IHRoYXQgdGhlIGxhdHRlciBwYXJ0aWNsZXMgY29tYmluZSBpbiB2YXJpb3VzIHByb3BvcnRpb25zIHRvIG1ha2UgdXAgYXRvbWljIG51Y2xlaS4gVGhlcmUgYXJlIHNpeCB0eXBlcywgb3IgZmxhdm91cnMsIG9mIHF1YXJrcyB0aGF0IGRpZmZlciBmcm9tIG9uZSBhbm90aGVyIGluIHRoZWlyIG1hc3MgYW5kIGNoYXJnZSBjaGFyYWN0ZXJpc3RpY3MuIFRoZXNlIHNpeCBxdWFyayBmbGF2b3VycyBjYW4gYmUgZ3JvdXBlZCBpbiB0aHJlZSBwYWlyczogdXAgYW5kIGRvd24sIGNoYXJtIGFuZCBzdHJhbmdlLCBhbmQgdG9wIGFuZCBib3R0b20uIFF1YXJrcyBhcHBlYXIgdG8gYmUgdHJ1ZSBlbGVtZW50YXJ5IHBhcnRpY2xlczsgdGhhdCBpcywgdGhleSBoYXZlIG5vIGFwcGFyZW50IHN0cnVjdHVyZSBhbmQgY2Fubm90IGJlIHJlc29sdmVkIGludG8gc29tZXRoaW5nIHNtYWxsZXIuIEluIGFkZGl0aW9uLCBob3dldmVyLCBxdWFya3MgYWx3YXlzIHNlZW0gdG8gb2NjdXIgaW4gY29tYmluYXRpb24gd2l0aCBvdGhlciBxdWFya3Mgb3Igd2l0aCBhbnRpcXVhcmtzLCB0aGVpciBhbnRpcGFydGljbGVzLCB0byBmb3JtIGFsbCBoYWRyb25zIFx1MjAxMyB0aGUgc28tY2FsbGVkIHN0cm9uZ2x5IGludGVyYWN0aW5nIHBhcnRpY2xlcyB0aGF0IGVuY29tcGFzcyBib3RoIGJhcnlvbnMgYW5kIG1lc29ucy4gVGhlIGludGVycHJldGF0aW9uIG9mIHF1YXJrcyBhcyBhY3R1YWwgcGh5c2ljYWwgZW50aXRpZXMgaW5pdGlhbGx5IHBvc2VkIHR3byBtYWpvciBwcm9ibGVtcy4gRmlyc3QsIHF1YXJrcyBoYWQgdG8gaGF2ZSBoYWxmLWludGVnZXIgc3BpbiAoaW50cmluc2ljIGFuZ3VsYXIgbW9tZW50dW0pIHZhbHVlcyBmb3IgdGhlIG1vZGVsIHRvIHdvcmssIGJ1dCBhdCB0aGUgc2FtZSB0aW1lIHRoZXkgc2VlbWVkIHRvIHZpb2xhdGUgdGhlIFBhdWxpIGV4Y2x1c2lvbiBwcmluY2lwbGUsIHdoaWNoIGdvdmVybnMgdGhlIGJlaGF2aW91ciBvZiBhbGwgcGFydGljbGVzIChjYWxsZWQgZmVybWlvbnMpIGhhdmluZyBvZGQgaGFsZi1pbnRlZ2VyIHNwaW4uIEluIG1hbnkgb2YgdGhlIGJhcnlvbiBjb25maWd1cmF0aW9ucyBjb25zdHJ1Y3RlZCBvZiBxdWFya3MsIHNvbWV0aW1lcyB0d28gb3IgZXZlbiB0aHJlZSBpZGVudGljYWwgcXVhcmtzIGhhZCB0byBiZSBzZXQgaW4gdGhlIHNhbWUgcXVhbnR1bSBzdGF0ZSBcdTIwMTMgYW4gYXJyYW5nZW1lbnQgcHJvaGliaXRlZCBieSB0aGUgZXhjbHVzaW9uIHByaW5jaXBsZS4gU2Vjb25kLCBxdWFya3MgYXBwZWFyZWQgdG8gZGVmeSBiZWluZyBmcmVlZCBmcm9tIHRoZSBwYXJ0aWNsZXMgdGhleSBtYWRlIHVwLiBBbHRob3VnaCB0aGUgZm9yY2VzIGJpbmRpbmcgcXVhcmtzIHdlcmUgc3Ryb25nLCBpdCBzZWVtZWQgaW1wcm9iYWJsZSB0aGF0IHRoZXkgd2VyZSBwb3dlcmZ1bCBlbm91Z2ggdG8gd2l0aHN0YW5kIGJvbWJhcmRtZW50IGJ5IGhpZ2gtZW5lcmd5IHBhcnRpY2xlIGJlYW1zIGZyb20gYWNjZWxlcmF0b3JzLiZuYnNwO1F1YXJrIChzaXplOiAxIFlvY3RvbWV0ZXIpLCBhbnkgbWVtYmVyIG9mIGEgZ3JvdXAgb2YgZWxlbWVudGFyeSBzdWJhdG9taWMgcGFydGljbGVzIHRoYXQgaW50ZXJhY3QgYnkgbWVhbnMgb2YgdGhlIHN0cm9uZyBmb3JjZSBhbmQgYXJlIGJlbGlldmVkIHRvIGJlIGFtb25nIHRoZSBmdW5kYW1lbnRhbCBjb25zdGl0dWVudHMgb2YgbWF0dGVyLiBRdWFya3MgYXNzb2NpYXRlIHdpdGggb25lIGFub3RoZXIgdmlhIHRoZSBzdHJvbmcgZm9yY2UgdG8gbWFrZSB1cCBwcm90b25zIGFuZCBuZXV0cm9ucywgaW4gbXVjaCB0aGUgc2FtZSB3YXkgdGhhdCB0aGUgbGF0dGVyIHBhcnRpY2xlcyBjb21iaW5lIGluIHZhcmlvdXMgcHJvcG9ydGlvbnMgdG8gbWFrZSB1cCBhdG9taWMgbnVjbGVpLiBUaGVyZSBhcmUgc2l4IHR5cGVzLCBvciBmbGF2b3Vycywgb2YgcXVhcmtzIHRoYXQgZGlmZmVyIGZyb20gb25lIGFub3RoZXIgaW4gdGhlaXIgbWFzcyBhbmQgY2hhcmdlIGNoYXJhY3RlcmlzdGljcy4gVGhlc2Ugc2l4IHF1YXJrIGZsYXZvdXJzIGNhbiBiZSBncm91cGVkIGluIHRocmVlIHBhaXJzOiB1cCBhbmQgZG93biwgY2hhcm0gYW5kIHN0cmFuZ2UsIGFuZCB0b3AgYW5kIGJvdHRvbS4gUXVhcmtzIGFwcGVhciB0byBiZSB0cnVlIGVsZW1lbnRhcnkgcGFydGljbGVzOyB0aGF0IGlzLCB0aGV5IGhhdmUgbm8gYXBwYXJlbnQgc3RydWN0dXJlIGFuZCBjYW5ub3QgYmUgcmVzb2x2ZWQgaW50byBzb21ldGhpbmcgc21hbGxlci4gSW4gYWRkaXRpb24sIGhvd2V2ZXIsIHF1YXJrcyBhbHdheXMgc2VlbSB0byBvY2N1ciBpbiBjb21iaW5hdGlvbiB3aXRoIG90aGVyIHF1YXJrcyBvciB3aXRoIGFudGlxdWFya3MsIHRoZWlyIGFudGlwYXJ0aWNsZXMsIHRvIGZvcm0gYWxsIGhhZHJvbnMgXHUyMDEzIHRoZSBzby1jYWxsZWQgc3Ryb25nbHkgaW50ZXJhY3RpbmcgcGFydGljbGVzIHRoYXQgZW5jb21wYXNzIGJvdGggYmFyeW9ucyBhbmQgbWVzb25zLiBUaGUgaW50ZXJwcmV0YXRpb24gb2YgcXVhcmtzIGFzIGFjdHVhbCBwaHlzaWNhbCBlbnRpdGllcyBpbml0aWFsbHkgcG9zZWQgdHdvIG1ham9yIHByb2JsZW1zLiBGaXJzdCwgcXVhcmtzIGhhZCB0byBoYXZlIGhhbGYtaW50ZWdlciBzcGluIChpbnRyaW5zaWMgYW5ndWxhciBtb21lbnR1bSkgdmFsdWVzIGZvciB0aGUgbW9kZWwgdG8gd29yaywgYnV0IGF0IHRoZSBzYW1lIHRpbWUgdGhleSBzZWVtZWQgdG8gdmlvbGF0ZSB0aGUgUGF1bGkgZXhjbHVzaW9uIHByaW5jaXBsZSwgd2hpY2ggZ292ZXJucyB0aGUgYmVoYXZpb3VyIG9mIGFsbCBwYXJ0aWNsZXMgKGNhbGxlZCBmZXJtaW9ucykgaGF2aW5nIG9kZCBoYWxmLWludGVnZXIgc3Bpbi4gSW4gbWFueSBvZiB0aGUgYmFyeW9uIGNvbmZpZ3VyYXRpb25zIGNvbnN0cnVjdGVkIG9mIHF1YXJrcywgc29tZXRpbWVzIHR3byBvciBldmVuIHRocmVlIGlkZW50aWNhbCBxdWFya3MgaGFkIHRvIGJlIHNldCBpbiB0aGUgc2FtZSBxdWFudHVtIHN0YXRlIFx1MjAxMyBhbiBhcnJhbmdlbWVudCBwcm9oaWJpdGVkIGJ5IHRoZSBleGNsdXNpb24gcHJpbmNpcGxlLiBTZWNvbmQsIHF1YXJrcyBhcHBlYXJlZCB0byBkZWZ5IGJlaW5nIGZyZWVkIGZyb20gdGhlIHBhcnRpY2xlcyB0aGV5IG1hZGUgdXAuIEFsdGhvdWdoIHRoZSBmb3JjZXMgYmluZGluZyBxdWFya3Mgd2VyZSBzdHJvbmcsIGl0IHNlZW1lZCBpbXByb2JhYmxlIHRoYXQgdGhleSB3ZXJlIHBvd2VyZnVsIGVub3VnaCB0byB3aXRoc3RhbmQgYm9tYmFyZG1lbnQgYnkgaGlnaC1lbmVyZ3kgcGFydGljbGUgYmVhbXMgZnJvbSBhY2NlbGVyYXRvcnMuPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoyMywiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjg2ODciLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoic21hbGwiLCJkaXNwbGF5b24iOlsibW9iaWxlIl0sImFsdGVybmF0ZXMiOlt7Il9pZCI6IjI4Njg4IiwiaW5kZXgiOjAsInRpdGxlIjoiIiwiZm9udEZhbWlseSI6Iidmb250LTE1MjczJyIsImZvbnRTaXplIjoiMTUiLCJsaW5lSGVpZ2h0IjoiMTkiLCJsZXR0ZXJTcGFjaW5nIjoiMC4wNGVtIiwiaGVpZ2h0QWRkaXRpb24iOjAsInBhZGRpbmdsciI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJSZWd1bGFyIiwiaW5kZXgiOjAsInRleHQiOiI8cD5RdWFyazogMSBZb2N0b21ldGVyLCZuYnNwO2FueSBtZW1iZXIgb2YgYSBncm91cCBvZiBlbGVtZW50YXJ5IHN1YmF0b21pYyBwYXJ0aWNsZXMgdGhhdCBpbnRlcmFjdCBieSBtZWFucyBvZiB0aGUgc3Ryb25nIGZvcmNlIGFuZCBhcmUgYmVsaWV2ZWQgdG8gYmUgYW1vbmcgdGhlIGZ1bmRhbWVudGFsIGNvbnN0aXR1ZW50cyBvZiBtYXR0ZXIuIFF1YXJrcyBhc3NvY2lhdGUgd2l0aCBvbmUgYW5vdGhlciB2aWEgdGhlIHN0cm9uZyBmb3JjZSB0byBtYWtlIHVwIHByb3RvbnMgYW5kIG5ldXRyb25zLCBpbiBtdWNoIHRoZSBzYW1lIHdheSB0aGF0IHRoZSBsYXR0ZXIgcGFydGljbGVzIGNvbWJpbmUgaW4gdmFyaW91cyBwcm9wb3J0aW9ucyB0byBtYWtlIHVwIGF0b21pYyBudWNsZWkuIFRoZXJlIGFyZSBzaXggdHlwZXMsIG9yIGZsYXZvdXJzLCBvZiBxdWFya3MgdGhhdCBkaWZmZXIgZnJvbSBvbmUgYW5vdGhlciBpbiB0aGVpciBtYXNzIGFuZCBjaGFyZ2UgY2hhcmFjdGVyaXN0aWNzLiBUaGVzZSBzaXggcXVhcmsgZmxhdm91cnMgY2FuIGJlIGdyb3VwZWQgaW4gdGhyZWUgcGFpcnM6IHVwIGFuZCBkb3duLCBjaGFybSBhbmQgc3RyYW5nZSwgYW5kIHRvcCBhbmQgYm90dG9tLiBRdWFya3MgYXBwZWFyIHRvIGJlIHRydWUgZWxlbWVudGFyeSBwYXJ0aWNsZXM7IHRoYXQgaXMsIHRoZXkgaGF2ZSBubyBhcHBhcmVudCBzdHJ1Y3R1cmUgYW5kIGNhbm5vdCBiZSByZXNvbHZlZCBpbnRvIHNvbWV0aGluZyBzbWFsbGVyLiBJbiBhZGRpdGlvbiwgaG93ZXZlciwgcXVhcmtzIGFsd2F5cyBzZWVtIHRvIG9jY3VyIGluIGNvbWJpbmF0aW9uIHdpdGggb3RoZXIgcXVhcmtzIG9yIHdpdGggYW50aXF1YXJrcywgdGhlaXIgYW50aXBhcnRpY2xlcywgdG8gZm9ybSBhbGwgaGFkcm9ucyBcdTIwMTMgdGhlIHNvLWNhbGxlZCBzdHJvbmdseSBpbnRlcmFjdGluZyBwYXJ0aWNsZXMgdGhhdCBlbmNvbXBhc3MgYm90aCBiYXJ5b25zIGFuZCBtZXNvbnMuIFRoZSBpbnRlcnByZXRhdGlvbiBvZiBxdWFya3MgYXMgYWN0dWFsIHBoeXNpY2FsIGVudGl0aWVzIGluaXRpYWxseSBwb3NlZCB0d28gbWFqb3IgcHJvYmxlbXMuIEZpcnN0LCBxdWFya3MgaGFkIHRvIGhhdmUgaGFsZi1pbnRlZ2VyIHNwaW4gKGludHJpbnNpYyBhbmd1bGFyIG1vbWVudHVtKSB2YWx1ZXMgZm9yIHRoZSBtb2RlbCB0byB3b3JrLCBidXQgYXQgdGhlIHNhbWUgdGltZSB0aGV5IHNlZW1lZCB0byB2aW9sYXRlIHRoZSBQYXVsaSBleGNsdXNpb24gcHJpbmNpcGxlLCB3aGljaCBnb3Zlcm5zIHRoZSBiZWhhdmlvdXIgb2YgYWxsIHBhcnRpY2xlcyAoY2FsbGVkIGZlcm1pb25zKSBoYXZpbmcgb2RkIGhhbGYtaW50ZWdlciBzcGluLiBJbiBtYW55IG9mIHRoZSBiYXJ5b24gY29uZmlndXJhdGlvbnMgY29uc3RydWN0ZWQgb2YgcXVhcmtzLCBzb21ldGltZXMgdHdvIG9yIGV2ZW4gdGhyZWUgaWRlbnRpY2FsIHF1YXJrcyBoYWQgdG8gYmUgc2V0IGluIHRoZSBzYW1lIHF1YW50dW0gc3RhdGUgXHUyMDEzIGFuIGFycmFuZ2VtZW50IHByb2hpYml0ZWQgYnkgdGhlIGV4Y2x1c2lvbiBwcmluY2lwbGUuIFNlY29uZCwgcXVhcmtzIGFwcGVhcmVkIHRvIGRlZnkgYmVpbmcgZnJlZWQgZnJvbSB0aGUgcGFydGljbGVzIHRoZXkgbWFkZSB1cC4gQWx0aG91Z2ggdGhlIGZvcmNlcyBiaW5kaW5nIHF1YXJrcyB3ZXJlIHN0cm9uZywgaXQgc2VlbWVkIGltcHJvYmFibGUgdGhhdCB0aGV5IHdlcmUgcG93ZXJmdWwgZW5vdWdoIHRvIHdpdGhzdGFuZCBib21iYXJkbWVudCBieSBoaWdoLWVuZXJneSBwYXJ0aWNsZSBiZWFtcyBmcm9tIGFjY2VsZXJhdG9ycy4mbmJzcDtRdWFyayAoc2l6ZTogMSBZb2N0b21ldGVyKSwgYW55IG1lbWJlciBvZiBhIGdyb3VwIG9mIGVsZW1lbnRhcnkgc3ViYXRvbWljIHBhcnRpY2xlcyB0aGF0IGludGVyYWN0IGJ5IG1lYW5zIG9mIHRoZSBzdHJvbmcgZm9yY2UgYW5kIGFyZSBiZWxpZXZlZCB0byBiZSBhbW9uZyB0aGUgZnVuZGFtZW50YWwgY29uc3RpdHVlbnRzIG9mIG1hdHRlci4gUXVhcmtzIGFzc29jaWF0ZSB3aXRoIG9uZSBhbm90aGVyIHZpYSB0aGUgc3Ryb25nIGZvcmNlIHRvIG1ha2UgdXAgcHJvdG9ucyBhbmQgbmV1dHJvbnMsIGluIG11Y2ggdGhlIHNhbWUgd2F5IHRoYXQgdGhlIGxhdHRlciBwYXJ0aWNsZXMgY29tYmluZSBpbiB2YXJpb3VzIHByb3BvcnRpb25zIHRvIG1ha2UgdXAgYXRvbWljIG51Y2xlaS4gVGhlcmUgYXJlIHNpeCB0eXBlcywgb3IgZmxhdm91cnMsIG9mIHF1YXJrcyB0aGF0IGRpZmZlciBmcm9tIG9uZSBhbm90aGVyIGluIHRoZWlyIG1hc3MgYW5kIGNoYXJnZSBjaGFyYWN0ZXJpc3RpY3MuIFRoZXNlIHNpeCBxdWFyayBmbGF2b3VycyBjYW4gYmUgZ3JvdXBlZCBpbiB0aHJlZSBwYWlyczogdXAgYW5kIGRvd24sIGNoYXJtIGFuZCBzdHJhbmdlLCBhbmQgdG9wIGFuZCBib3R0b20uIFF1YXJrcyBhcHBlYXIgdG8gYmUgdHJ1ZSBlbGVtZW50YXJ5IHBhcnRpY2xlczsgdGhhdCBpcywgdGhleSBoYXZlIG5vIGFwcGFyZW50IHN0cnVjdHVyZSBhbmQgY2Fubm90IGJlIHJlc29sdmVkIGludG8gc29tZXRoaW5nIHNtYWxsZXIuIEluIGFkZGl0aW9uLCBob3dldmVyLCBxdWFya3MgYWx3YXlzIHNlZW0gdG8gb2NjdXIgaW4gY29tYmluYXRpb24gd2l0aCBvdGhlciBxdWFya3Mgb3Igd2l0aCBhbnRpcXVhcmtzLCB0aGVpciBhbnRpcGFydGljbGVzLCB0byBmb3JtIGFsbCBoYWRyb25zIFx1MjAxMyB0aGUgc28tY2FsbGVkIHN0cm9uZ2x5IGludGVyYWN0aW5nIHBhcnRpY2xlcyB0aGF0IGVuY29tcGFzcyBib3RoIGJhcnlvbnMgYW5kIG1lc29ucy4gVGhlIGludGVycHJldGF0aW9uIG9mIHF1YXJrcyBhcyBhY3R1YWwgcGh5c2ljYWwgZW50aXRpZXMgaW5pdGlhbGx5IHBvc2VkIHR3byBtYWpvciBwcm9ibGVtcy4gRmlyc3QsIHF1YXJrcyBoYWQgdG8gaGF2ZSBoYWxmLWludGVnZXIgc3BpbiAoaW50cmluc2ljIGFuZ3VsYXIgbW9tZW50dW0pIHZhbHVlcyBmb3IgdGhlIG1vZGVsIHRvIHdvcmssIGJ1dCBhdCB0aGUgc2FtZSB0aW1lIHRoZXkgc2VlbWVkIHRvIHZpb2xhdGUgdGhlIFBhdWxpIGV4Y2x1c2lvbiBwcmluY2lwbGUsIHdoaWNoIGdvdmVybnMgdGhlIGJlaGF2aW91ciBvZiBhbGwgcGFydGljbGVzIChjYWxsZWQgZmVybWlvbnMpIGhhdmluZyBvZGQgaGFsZi1pbnRlZ2VyIHNwaW4uIEluIG1hbnkgb2YgdGhlIGJhcnlvbiBjb25maWd1cmF0aW9ucyBjb25zdHJ1Y3RlZCBvZiBxdWFya3MsIHNvbWV0aW1lcyB0d28gb3IgZXZlbiB0aHJlZSBpZGVudGljYWwgcXVhcmtzIGhhZCB0byBiZSBzZXQgaW4gdGhlIHNhbWUgcXVhbnR1bSBzdGF0ZSBcdTIwMTMgYW4gYXJyYW5nZW1lbnQgcHJvaGliaXRlZCBieSB0aGUgZXhjbHVzaW9uIHByaW5jaXBsZS4gU2Vjb25kLCBxdWFya3MgYXBwZWFyZWQgdG8gZGVmeSBiZWluZyBmcmVlZCBmcm9tIHRoZSBwYXJ0aWNsZXMgdGhleSBtYWRlIHVwLiBBbHRob3VnaCB0aGUgZm9yY2VzIGJpbmRpbmcgcXVhcmtzIHdlcmUgc3Ryb25nLCBpdCBzZWVtZWQgaW1wcm9iYWJsZSB0aGF0IHRoZXkgd2VyZSBwb3dlcmZ1bCBlbm91Z2ggdG8gd2l0aHN0YW5kIGJvbWJhcmRtZW50IGJ5IGhpZ2gtZW5lcmd5IHBhcnRpY2xlIGJlYW1zIGZyb20gYWNjZWxlcmF0b3JzLjxcL3A+IiwiY29sb3IiOiIiLCJiYWNrZ3JvdW5kQ29sb3IiOiIiLCJudW1MaW5lcyI6MjMsImZpcnN0T2ZUaHJlZSI6bnVsbH0seyJpZCI6IjI4NjY1IiwidHlwZSI6InNhbXBsZSIsIndpZHRoIjoieGxhcmdlIiwiZGlzcGxheW9uIjpbIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoiaW1hZ2UiLCJpbWFnZSI6IlwvaW1hZ2VzXC9ESU4yLnN2ZyJ9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMi4wMCIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjY4NDkiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCIsIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJsaW5lSGVpZ2h0IjoiMC44MiIsImxldHRlclNwYWNpbmciOiItMC4wMmVtIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjEyZW0iLCJ0ZXh0IjoiTWV0cmljPGJyIFwvPlxyXG5TeXN0ZW0iLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMS43NCIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg2NzQiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoiaW1hZ2UiLCJpbWFnZSI6IlwvaW1hZ2VzXC9ESU5fQTQuc3ZnIn1dLCJpbmRleCI6MCwidGl0bGUiOiJCb2xkIiwicmF0aW8iOiIxLjQ4IiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyNjg1MyIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6ImltYWdlIiwiaW1hZ2UiOiJcL2ltYWdlc1wvRElOQTQuc3ZnIn1dLCJpbmRleCI6MCwidGl0bGUiOiJCb2xkIiwicmF0aW8iOiIxLjQ4IiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyODY3OCIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzUnIiwibGluZUhlaWdodCI6IjAuOSIsImxldHRlclNwYWNpbmciOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIiwibWFyZ2luVG9wIjoiLTAuMWVtIiwidGV4dCI6IkltcGVyaWFsPGJyIFwvPlxyXG5TeXN0ZW0iLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMi4wMCIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg2NzYiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsibW9iaWxlIl0sImFsdGVybmF0ZXMiOltdLCJjb250ZW50cyI6W3siaW5kZXgiOjAsInR5cGUiOiJpbWFnZSIsImltYWdlIjoiXC9pbWFnZXNcL1J1bGVyLnN2ZyJ9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMS4wMCIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg1OTciLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoiaW1hZ2UiLCJpbWFnZSI6IlwvaW1hZ2VzXC9tZWFzdXJlXzA0LnN2ZyJ9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMS44MiIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjg2MTMiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCIsIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJsaW5lSGVpZ2h0IjoiMC45NSIsImxldHRlclNwYWNpbmciOiItMC4wMWVtIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjA1ZW0iLCJ0ZXh0IjoiTUFSQVRIT048YnIgXC8+XHJcbjI2LjIgTWlsZXM8YnIgXC8+XHJcbihvcikgNDIuMiBLbSIsImNvbG9yIjoiMDAwMDAwIiwiYmFja2dyb3VuZENvbG9yIjpudWxsLCJoaWRlQm9yZGVyIjpmYWxzZX1dLCJpbmRleCI6MCwidGl0bGUiOiJCb2xkIiwicmF0aW8iOiIyLjAwIiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyODY4MCIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzUnIiwibGluZUhlaWdodCI6IjEuMDUiLCJsZXR0ZXJTcGFjaW5nIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjFlbSIsInRleHQiOiJVbml0IENvbnZlcnNpb248YnIgXC8+XHJcblx1MDBiZFx1MjAwOWdhbCAoMlx1MjAwOXF0KTxiciBcLz5cclxuMi41NFx1MjAwOWNtXHUyMDA5XHUyMDA5PVx1MjAwOVx1MjAwOTFcdTIwMDlpbmNoPGJyIFwvPlxyXG4xNlx1MjAwOW96XHUyMDA5XHUyMDA5XC9cdTIwMDlcdTIwMDlcdTIwMDk0NTRcdTIwMDlnPGJyIFwvPlxyXG4xXHUyMDA5bVx1MjAwOVx1MjAwOT1cdTIwMDlcdTIwMDkzLjI4MDhcdTIwMDlmdDxiciBcLz5cclxuMlx1MjAwOWZ1clx1MjAwOVx1MjAwOVx1MjI0OFx1MjAwOVx1MjAwOVx1MDBiY1x1MjAwOW1pbGUiLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMS4yNSIsInJlc2l6ZWdyb3VwIjpudWxsfSx7ImlkIjoiMjY4NTkiLCJ0eXBlIjoic2FtcGxlIiwid2lkdGgiOiJ4bGFyZ2UiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbXSwiY29udGVudHMiOlt7ImluZGV4IjowLCJ0eXBlIjoidGV4dCIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJsaW5lSGVpZ2h0IjoiMS4wMiIsImxldHRlclNwYWNpbmciOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiXCJzczAxXCIiLCJtYXJnaW5Ub3AiOiItMC4xNWVtIiwidGV4dCI6IipVbml0IENvbnZlcnNpb24gQ2hhcnQqPGJyIFwvPlxyXG4yLjU0IENlbnRpbWV0ZXJzID0gMSBJbmNoPGJyIFwvPlxyXG4xNiBPdW5jZXMgXC8gNDU0IEdyYW1zPGJyIFwvPlxyXG5cdTAwYmQgR2FsbG9uICgyIExpcXVpZCBRdWFydHMpPGJyIFwvPlxyXG4yIEZ1cmxvbmdzIFx1MjI0OCBcdTAwYmMgTWlsZTxiciBcLz5cclxuMSwwMDAgWWVhcnMgXHUyMTkyIDEgTWlsbGVubml1bSIsImNvbG9yIjoiMDAwMDAwIiwiYmFja2dyb3VuZENvbG9yIjpudWxsLCJoaWRlQm9yZGVyIjpmYWxzZX0seyJpbmRleCI6MSwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzUnIiwibGluZUhlaWdodCI6IjEuMDIiLCJsZXR0ZXJTcGFjaW5nIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiIsIm1hcmdpblRvcCI6Ii0wLjE1ZW0iLCJ0ZXh0IjoiKlVuaXQgQ29udmVyc2lvbiBDaGFydCo8YnIgXC8+XHJcbjIuNTQgQ2VudGltZXRlcnMgPSAxIEluY2g8YnIgXC8+XHJcbjE2IE91bmNlcyBcLyA0NTQgR3JhbXM8YnIgXC8+XHJcblx1MDBiZCBHYWxsb24gKDIgTGlxdWlkIFF1YXJ0cyk8YnIgXC8+XHJcbjIgRnVybG9uZ3MgXHUyMjQ4IFx1MDBiYyBNaWxlPGJyIFwvPlxyXG4xLDAwMCBZZWFycyBcdTIxOTIgMSBNaWxsZW5uaXVtIiwiY29sb3IiOiIwMDAwMDAiLCJiYWNrZ3JvdW5kQ29sb3IiOm51bGwsImhpZGVCb3JkZXIiOmZhbHNlfV0sImluZGV4IjowLCJ0aXRsZSI6IkJvbGQiLCJyYXRpbyI6IjIuMDAiLCJyZXNpemVncm91cCI6bnVsbH0seyJpZCI6IjI4NTA3IiwidHlwZSI6InRleHQiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJkZXNrdG9wIl0sImFsdGVybmF0ZXMiOlt7Il9pZCI6IjI4NTA4IiwiaW5kZXgiOjAsInRpdGxlIjoiIiwiZm9udEZhbWlseSI6Iidmb250LTE1OTM1JyIsImZvbnRTaXplIjoiNTAiLCJsaW5lSGVpZ2h0IjoiNTIiLCJsZXR0ZXJTcGFjaW5nIjpmYWxzZSwiaGVpZ2h0QWRkaXRpb24iOjUsInBhZGRpbmdsciI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJCb2xkIiwiaW5kZXgiOjAsInRleHQiOiI8cD5UaGUgbWV0cmljIHN5c3RlbSBvciBTSSAoSW50ZXJuYXRpb25hbCBTeXN0ZW0pIGlzIHRoZSZuYnNwO21vc3QgY29tbW9uIHN5c3RlbSBvZiBtZWFzdXJlbWVudHMgaW4gdGhlIHdvcmxkLCBhbmQgdGhlIGVhc2llc3QgdG8gdXNlLiBUaGUgYmFzZSB1bml0cyBmb3IgdGhlIG1ldHJpYyBzeXN0ZW0gYXJlIHRoZSB1bml0cyBvZjogbGVuZ3RoLCBtZWFzdXJlZCBpbiBtZXRlcnMgW21dOyZuYnNwO3RlbXBlcmF0dXJlLCBtZWFzdXJlZCBpbiBDZWxzaXVzIFtcdTAwYjBDXTsgbWFzcywgbWVhc3VyZWQmbmJzcDtpbiBncmFtcyBbZ107IGFuZCZuYnNwO3RpbWUsIG1lYXN1cmVkIGluIHNlY29uZHMgW3NdLiBBZGRpdGlvbmFsbHksIHRoZSBtZXRyaWMgc3lzdGVtIGluY2x1ZGVzIHVuaXRzIGZvciBlbGVjdHJpY2FsIGN1cnJlbnQsIHRoZSZuYnNwO2FtcGVyZSZuYnNwO1tBXTsgdGhlIGFtb3VudCBvZiBzdWJzdGFuY2UsIHRoZSZuYnNwO21vbGUgW21vbF07IGx1bWlub3VzIGludGVuc2l0eSwgdGhlJm5ic3A7Y2FuZGVsYSZuYnNwO1tjZF07IGFuZCB0aGVybW9keW5hbWljIHRlbXBlcmF0dXJlLCB0aGUmbmJzcDtrZWx2aW4mbmJzcDtbS10uIEVhY2ggb2YgdGhlc2UgdW5pdHMgY2FuIGJlIHNjYWxlZCBieSBwb3dlcnMgb2YgdGVuLCBtYWtpbmcgY2FsY3VsYXRpb25zIGVhc2llciBhbmQgY29udmVyc2lvbnMgYmV0d2VlbiB1bml0cyBtb3JlIGludHVpdGl2ZS4gRm9yIGV4YW1wbGUsIGxhcmdlciBvciBzbWFsbGVyIHF1YW50aXRpZXMgYXJlIGV4cHJlc3NlZCB1c2luZyBwcmVmaXhlcyBzdWNoIGFzIGtpbG8tICgxLDAwMCB0aW1lcyB0aGUgYmFzZSB1bml0KSwgY2VudGktICgxXC8xMDB0aCksIG9yIG1pbGxpLSAoMVwvMSwwMDB0aCkuIFRoaXMgc3lzdGVtIGlzIGhpZ2hseSBlZmZpY2llbnQgaW4gc2NpZW50aWZpYywgaW5kdXN0cmlhbCwgYW5kIGV2ZXJ5ZGF5IGNvbnRleHRzLiBJdHMgdW5pdmVyc2FsaXR5IGFsbG93cyBmb3Igc2VhbWxlc3MgY29tbXVuaWNhdGlvbiBvZiBtZWFzdXJlbWVudHMgaW4gaW50ZXJuYXRpb25hbCBzZXR0aW5ncywgYW5kIGl0IGlzIGFsc28gYSBzaWduaWZpY2FudCBpbXByb3ZlbWVudCBvdmVyIG9sZGVyIHN5c3RlbXMgdGhhdCBoYWQgaW5jb25zaXN0ZW50IHVuaXRzIGFuZCByZXF1aXJlZCBjb21wbGV4IGNvbnZlcnNpb25zLiBUaGUgbWV0cmljIHN5c3RlbSBpcyBsZWdhbGx5IHJlY29nbml6ZWQgaW4gbW9zdCBjb3VudHJpZXMsIGFuZCBpdHMgdXNlIGlzIG1hbmRhdGVkIGluIGluZHVzdHJpZXMgbGlrZSBoZWFsdGhjYXJlLCBzY2llbmNlLCBhbmQgZW5naW5lZXJpbmcuIFdoaWxlIHNvbWUgY291bnRyaWVzLCBzdWNoIGFzIHRoZSBVbml0ZWQgU3RhdGVzLCBzdGlsbCB1c2UgdGhlJm5ic3A7aW1wZXJpYWwgc3lzdGVtJm5ic3A7Zm9yIGV2ZXJ5ZGF5IG1lYXN1cmVtZW50cywgZXZlbiB0aGVyZSwgdGhlIG1ldHJpYyBzeXN0ZW0gaXMgZW1wbG95ZWQgaW4gc2NpZW50aWZpYyBhbmQgdGVjaG5pY2FsIGZpZWxkcywgZW5zdXJpbmcgY29uc2lzdGVuY3kgd29ybGR3aWRlLiBUaGUgYWRvcHRpb24gb2YgdGhlIG1ldHJpYyBzeXN0ZW0gaGFzIGFsc28gcGxheWVkIGEgY3J1Y2lhbCByb2xlIGluIGdsb2JhbCB0cmFkZSwgZW5hYmxpbmcgY291bnRyaWVzIHRvIHN0YW5kYXJkaXplIG1lYXN1cmVtZW50cyBmb3IgcHJvZHVjdGlvbiwgc2hpcHBpbmcsIGFuZCBjb21tZXJjZS4gVGhpcyBzdGFuZGFyZGl6YXRpb24gcmVkdWNlcyBlcnJvcnMsIGltcHJvdmVzIHByZWNpc2lvbiwgYW5kIGVuaGFuY2VzIGNvbW11bmljYXRpb24gaW4gdmFyaW91cyBpbmR1c3RyaWVzLiBGb3IgaW5zdGFuY2UsIHRoZSBhdmlhdGlvbiBpbmR1c3RyeSByZWxpZXMgb24gU0kgdW5pdHMgZm9yIGFpciB0cmFmZmljIGNvbnRyb2wgYW5kIGZsaWdodCBvcGVyYXRpb25zLCBlbnN1cmluZyB0aGF0IGFsbCBwaWxvdHMsIG5vIG1hdHRlciB0aGVpciBjb3VudHJ5IG9mIG9yaWdpbiwgY2FuIGFjY3VyYXRlbHkgaW50ZXJwcmV0IGluc3RydWN0aW9ucy48XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjEyLCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyNjg2MyIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyNjg2NCIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJmb250U2l6ZSI6IjM4IiwibGluZUhlaWdodCI6IjQwIiwibGV0dGVyU3BhY2luZyI6IjAuMDI1ZW0iLCJoZWlnaHRBZGRpdGlvbiI6MCwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiJ9XSwiY29udGVudHMiOltdLCJ0aXRsZSI6IkJvbGQiLCJpbmRleCI6MCwidGV4dCI6IjxwPlRoZSBBbWVyaWNhbiBOYXRpb25hbCBTdGFuZGFyZHMgSW5zdGl0dXRlIChBTlNJKSBpcyBhIHByaXZhdGUgbm9ucHJvZml0IG9yZ2FuaXphdGlvbiB0aGF0IG92ZXJzZWVzIHRoZSBkZXZlbG9wbWVudCBvZiB2b2x1bnRhcnkgY29uc2Vuc3VzIHN0YW5kYXJkcyBmb3IgcHJvZHVjdHMsIHNlcnZpY2VzLCBwcm9jZXNzZXMsIHN5c3RlbXMsIGFuZCBwZXJzb25uZWwgaW4gdGhlIFVuaXRlZCBTdGF0ZXMuIFRoZSBvcmdhbml6YXRpb24gYWxzbyBjb29yZGluYXRlcyBVLlMuIHN0YW5kYXJkcyB3aXRoIGludGVybmF0aW9uYWwgc3RhbmRhcmRzIHNvIHRoYXQgQW1lcmljYW4gcHJvZHVjdHMgY2FuIGJlIHVzZWQgd29ybGR3aWRlLiBBTlNJIGFjY3JlZGl0cyBzdGFuZGFyZHMgdGhhdCBhcmUgZGV2ZWxvcGVkIGJ5IHJlcHJlc2VudGF0aXZlcyBvZiBvdGhlciBzdGFuZGFyZHMgb3JnYW5pemF0aW9ucywgZ292ZXJubWVudCBhZ2VuY2llcywgY29uc3VtZXIgZ3JvdXBzLCBjb21wYW5pZXMsIGFuZCBvdGhlcnMuIFRoZXNlIHN0YW5kYXJkcyBlbnN1cmUgdGhhdCB0aGUgY2hhcmFjdGVyaXN0aWNzIGFuZCBwZXJmb3JtYW5jZSBvZiBwcm9kdWN0cyBhcmUgY29uc2lzdGVudCwgdGhhdCBwZW9wbGUgdXNlIHRoZSBzYW1lIGRlZmluaXRpb25zIGFuZCB0ZXJtcywgYW5kIHRoYXQgcHJvZHVjdHMgYXJlIHRlc3RlZCB0aGUgc2FtZSB3YXkuIEFOU0kgYWxzbyBhY2NyZWRpdHMgb3JnYW5pemF0aW9ucyB0aGF0IGNhcnJ5IG91dCBwcm9kdWN0IG9yIHBlcnNvbm5lbCBjZXJ0aWZpY2F0aW9uIGluIGFjY29yZGFuY2Ugd2l0aCByZXF1aXJlbWVudHMgZGVmaW5lZCBpbiBpbnRlcm5hdGlvbmFsIHN0YW5kYXJkcy4gVGhlIEFtZXJpY2FuIE5hdGlvbmFsIFN0YW5kYXJkcyBJbnN0aXR1dGUgKEFOU0kpIGlzIGEgcHJpdmF0ZSBub25wcm9maXQgb3JnYW5pemF0aW9uIHRoYXQgb3ZlcnNlZXMgdGhlIGRldmVsb3BtZW50IG9mIHZvbHVudGFyeSBjb25zZW5zdXMgc3RhbmRhcmRzIGZvciBwcm9kdWN0cywgc2VydmljZXMsIHByb2Nlc3Nlcywgc3lzdGVtcywgYW5kIHBlcnNvbm5lbCBpbiB0aGUgVW5pdGVkIFN0YXRlcy4gVGhlIG9yZ2FuaXphdGlvbiBhbHNvIGNvb3JkaW5hdGVzIFUuUy4gc3RhbmRhcmRzIHdpdGggaW50ZXJuYXRpb25hbCBzdGFuZGFyZHMgc28gdGhhdCBBbWVyaWNhbiBwcm9kdWN0cyBjYW4gYmUgdXNlZCB3b3JsZHdpZGUuIEFOU0kgYWNjcmVkaXRzIHN0YW5kYXJkcyB0aGF0IGFyZSBkZXZlbG9wZWQgYnkgcmVwcmVzZW50YXRpdmVzIG9mIG90aGVyIHN0YW5kYXJkcyBvcmdhbml6YXRpb25zLCBnb3Zlcm5tZW50IGFnZW5jaWVzLCBjb25zdW1lciBncm91cHMsIGNvbXBhbmllcywgYW5kIG90aGVycy4gVGhlc2Ugc3RhbmRhcmRzIGVuc3VyZSB0aGF0IHRoZSBjaGFyYWN0ZXJpc3RpY3MgYW5kIHBlcmZvcm1hbmNlIG9mIHByb2R1Y3RzIGFyZSBjb25zaXN0ZW50LCB0aGF0IHBlb3BsZSB1c2UgdGhlIHNhbWUgZGVmaW5pdGlvbnMgYW5kIHRlcm1zLCBhbmQgdGhhdCBwcm9kdWN0cyBhcmUgdGVzdGVkIHRoZSBzYW1lIHdheS4gQU5TSSBhbHNvIGFjY3JlZGl0cyBvcmdhbml6YXRpb25zIHRoYXQgY2Fycnkgb3V0IHByb2R1Y3Qgb3IgcGVyc29ubmVsIGNlcnRpZmljYXRpb24gaW4gYWNjb3JkYW5jZSB3aXRoIHJlcXVpcmVtZW50cyBkZWZpbmVkIGluIGludGVybmF0aW9uYWwgc3RhbmRhcmRzLjxcL3A+XHJcblxyXG48cD4mbmJzcDs8XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjExLCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyNjg2NSIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyNjg2NiIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJmb250U2l6ZSI6IjMyIiwibGluZUhlaWdodCI6IjM2IiwibGV0dGVyU3BhY2luZyI6IjAuMDI1ZW0iLCJoZWlnaHRBZGRpdGlvbiI6NSwicGFkZGluZ2xyIjpmYWxzZSwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IiJ9XSwiY29udGVudHMiOltdLCJ0aXRsZSI6IkJvbGQiLCJpbmRleCI6MCwidGV4dCI6IjxwPkFOU0kgd2FzIG1vc3QgbGlrZWx5IGZvdW5kZWQgaW4gMTkxOCB3aGVuIGZpdmUgZW5naW5lZXJpbmcgc29jaWV0aWVzIGFuZCB0aHJlZSBnb3Zlcm5tZW50IGFnZW5jaWVzIGZvcm1lZCB0aGUgQW1lcmljYW4gRW5naW5lZXJpbmcgU3RhbmRhcmRzIENvbW1pdHRlZSAoQUVTQykuIEluIDE5MjgsIHRoZSBBRVNDIGJlY2FtZSB0aGUgQW1lcmljYW4gU3RhbmRhcmRzIEFzc29jaWF0aW9uIChBU0EpLiBJbiAxOTY2LCB0aGUgQVNBIHdhcyByZW9yZ2FuaXNlZCBhbmQgY2hhbmdlZCBpdHMgbmFtZSB0byB0aGUgVW5pdGVkIFN0YXRlcyBvZiBBbWVyaWNhIFN0YW5kYXJkcyBJbnN0aXR1dGUgKFVTQVNJKS4gUHJpb3IgdG8gMTkxOCwgdGhlIGZpdmUgZW5naW5lZXJpbmcgc29jaWV0aWVzOiBBbWVyaWNhbiBJbnN0aXR1dGUgb2YgRWxlY3RyaWNhbCBFbmdpbmVlcnMgKEFJRUUsIG5vdyBJRUVFKSwgQW1lcmljYW4gU29jaWV0eSBvZiBNZWNoYW5pY2FsIEVuZ2luZWVycyAoQVNNRSksIEFtZXJpY2FuIFNvY2lldHkgb2YgQ2l2aWwgRW5naW5lZXJzIChBU0NFKSwgQW1lcmljYW4gSW5zdGl0dXRlIG9mIE1pbmluZyBFbmdpbmVlcnMgKEFJTUUsIG5vdyBBbWVyaWNhbiBJbnN0aXR1dGUgb2YgTWluaW5nLCBNZXRhbGx1cmdpY2FsLCBhbmQgUGV0cm9sZXVtIEVuZ2luZWVycykgYW5kIEFtZXJpY2FuIFNvY2lldHkgZm9yIFRlc3RpbmcgYW5kIE1hdGVyaWFscyAobm93IEFTVE0gSW50ZXJuYXRpb25hbCksIGZvcm1lZCB0aGUgVW5pdGVkIEVuZ2luZWVyaW5nIFNvY2lldHkgKFVFUykgbWVtYmVyc2hpcC4gQXQgdGhlIGluc3RpZ2F0aW9uIG9mIHRoZSBBSUVFLCB0aGV5IGludml0ZWQgdGhlIFVTIGdvdmVybm1lbnQgZGVwYXJ0bWVudHMgb2YgV2FyLCBOYXZ5ICh3aGljaCB3ZXJlIG1lcmdlZCBpbnRvIHRoZSBEZXBhcnRtZW50IG9mIERlZmVuc2UgKERPRCkgaW4gMTk0NykgYW5kIENvbW1lcmNlIHRvIHBhcnRpY2lwYXRlIGluIHRoZSBmb3VuZGluZyBvZiBhIG5hdGlvbmFsIHN0YW5kYXJkcyBvcmdhbmlzYXRpb24uJm5ic3A7QU5TSSB3YXMgbW9zdCBsaWtlbHkgZm91bmRlZCBpbiAxOTE4IHdoZW4gZml2ZSBlbmdpbmVlcmluZyBzb2NpZXRpZXMgYW5kIHRocmVlIGdvdmVybm1lbnQgYWdlbmNpZXMgZm9ybWVkIHRoZSBBbWVyaWNhbiBFbmdpbmVlcmluZyBTdGFuZGFyZHMgQ29tbWl0dGVlIChBRVNDKS4gSW4gMTkyOCwgdGhlIEFFU0MgYmVjYW1lIHRoZSBBbWVyaWNhbiBTdGFuZGFyZHMgQXNzb2NpYXRpb24gKEFTQSkuIEluIDE5NjYsIHRoZSBBU0Egd2FzIHJlb3JnYW5pc2VkIGFuZCBjaGFuZ2VkIGl0cyBuYW1lIHRvIHRoZSBVbml0ZWQgU3RhdGVzIG9mIEFtZXJpY2EgU3RhbmRhcmRzIEluc3RpdHV0ZSAoVVNBU0kpLiBQcmlvciB0byAxOTE4LCB0aGUgZml2ZSBlbmdpbmVlcmluZyBzb2NpZXRpZXM6IEFtZXJpY2FuIEluc3RpdHV0ZSBvZiBFbGVjdHJpY2FsIEVuZ2luZWVycyAoQUlFRSwgbm93IElFRUUpLCBBbWVyaWNhbiBTb2NpZXR5IG9mIE1lY2hhbmljYWwgRW5naW5lZXJzIChBU01FKSwgQW1lcmljYW4gU29jaWV0eSBvZiBDaXZpbCBFbmdpbmVlcnMgKEFTQ0UpLCBBbWVyaWNhbiBJbnN0aXR1dGUgb2YgTWluaW5nIEVuZ2luZWVycyAoQUlNRSwgbm93IEFtZXJpY2FuIEluc3RpdHV0ZSBvZiBNaW5pbmcsIE1ldGFsbHVyZ2ljYWwsIGFuZCBQZXRyb2xldW0gRW5naW5lZXJzKSBhbmQgQW1lcmljYW4gU29jaWV0eSBmb3IgVGVzdGluZyBhbmQgTWF0ZXJpYWxzIChub3cgQVNUTSBJbnRlcm5hdGlvbmFsKSwgZm9ybWVkIHRoZSBVbml0ZWQgRW5naW5lZXJpbmcgU29jaWV0eSAoVUVTKSBtZW1iZXJzaGlwLiBBdCB0aGUgaW5zdGlnYXRpb24gb2YgdGhlIEFJRUUsIHRoZXkgaW52aXRlZCB0aGUgVVMgZ292ZXJubWVudCBkZXBhcnRtZW50cyBvZiBXYXIsIE5hdnkgKHdoaWNoIHdlcmUgbWVyZ2VkIGludG8gdGhlIERlcGFydG1lbnQgb2YgRGVmZW5zZSAoRE9EKSBpbiAxOTQ3KSBhbmQgQ29tbWVyY2UgdG8gcGFydGljaXBhdGUgaW4gdGhlIGZvdW5kaW5nIG9mIGEgbmF0aW9uYWwgc3RhbmRhcmRzIG9yZ2FuaXNhdGlvbi48XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjEyLCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyNjg2NyIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJtZWRpdW0iLCJkaXNwbGF5b24iOlsiZGVza3RvcCIsIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyNjg2OCIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJmb250U2l6ZSI6IjI0IiwibGluZUhlaWdodCI6IjI4IiwibGV0dGVyU3BhY2luZyI6IjAuMDNlbSIsImhlaWdodEFkZGl0aW9uIjowLCJwYWRkaW5nbHIiOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIn1dLCJjb250ZW50cyI6W10sInRpdGxlIjoiQm9sZCIsImluZGV4IjowLCJ0ZXh0IjoiPHA+TFx1MjAxOUFzc29jaWF0aW9uIGZyYW5cdTAwZTdhaXNlIGRlIG5vcm1hbGlzYXRpb24gKGFiclx1MDBlOWdcdTAwZTllIEFmbm9yIG91IEFGTk9SKSBlc3QgbFx1MjAxOW9yZ2FuaXNhdGlvbiBmcmFuXHUwMGU3YWlzZSBxdWkgcmVwclx1MDBlOXNlbnRlIGxhIEZyYW5jZSBhdXByXHUwMGU4cyBkZSBsXHUyMDE5T3JnYW5pc2F0aW9uIGludGVybmF0aW9uYWxlIGRlIG5vcm1hbGlzYXRpb24gKElTTykgZXQgZHUgQ29taXRcdTAwZTkgZXVyb3BcdTAwZTllbiBkZSBub3JtYWxpc2F0aW9uIChDRU4pLiBEZXB1aXMgbGUgMWVyIGphbnZpZXIgMjAxNCwgXHUwMGUwIGxhIHN1aXRlIGR1IHJhcHByb2NoZW1lbnQgZGUgbFx1MjAxOUFmbm9yIGVsbGUgZXN0IGF1c3NpIG1lbWJyZSBkdSBDb21pdFx1MDBlOSBldXJvcFx1MDBlOWVuIGRlIG5vcm1hbGlzYXRpb24gZW4gXHUwMGU5bGVjdHJvbmlxdWUgZXQgZW4gXHUwMGU5bGVjdHJvdGVjaG5pcXVlIChDRU5FTEVDKSBhdSBuaXZlYXUgZXVyb3BcdTAwZTllbiwgZXQgZGUgbGEgQ29tbWlzc2lvbiBcdTAwZTlsZWN0cm90ZWNobmlxdWUgaW50ZXJuYXRpb25hbGUgKENFSSkgYXUgbml2ZWF1IGludGVybmF0aW9uYWwuIExcdTIwMTlBc3NvY2lhdGlvbiBmcmFuXHUwMGU3YWlzZSBkZSBub3JtYWxpc2F0aW9uIGEgXHUwMGU5dFx1MDBlOSBjclx1MDBlOVx1MDBlOWUgZW4gMTkyNiA7IGVsbGUgZXN0IHBsYWNcdTAwZTllIHNvdXMgbGEgdHV0ZWxsZSBkdSBtaW5pc3RcdTAwZThyZSBjaGFyZ1x1MDBlOSBkZSBsXHUyMDE5aW5kdXN0cmllLiBTb24gclx1MDBmNGxlIGVzdCBwclx1MDBlOWNpc1x1MDBlOSBkYW5zIGxlIGRcdTAwZTljcmV0IFx1MjExNiAyMDA5XHUyMDEzNjk3IGR1IDE2IGp1aW4gMjAwOSByZWxhdGlmIFx1MDBlMCBsYSBub3JtYWxpc2F0aW9uLCBxdWkgbHVpIGNvbmZcdTAwZThyZSB1bmUgbWlzc2lvbiBkXHUyMDE5aW50XHUwMGU5clx1MDBlYXQgZ1x1MDBlOW5cdTAwZTlyYWwsIGRcdTAwZTljcmV0IG1vZGlmaVx1MDBlOSBwYXIgY2VsdWkgZHUgMTAgbm92ZW1icmUgMjAyMS4gXHUwMGMwIGNlIHRpdHJlLCBlbGxlIHBlclx1MDBlN29pdCB1bmUgc3VidmVudGlvbiBwdWJsaXF1ZSBjb3V2cmFudCB1bmUgcGFydGllIGRlIHNlcyBhY3Rpdml0XHUwMGU5cy4gRW4gMjAyMiwgY2Ugc291dGllbiByZXByXHUwMGU5c2VudGFpdCAzLDIgJSBkZXMgcHJvZHVpdHMgZHUgR3JvdXBlIEFGTk9SLCBkb250IGxcdTIwMTlhc3NvY2lhdGlvbiBjb25zdGl0dWUgbGEgaG9sZGluZy4gUmVjb25udWUgZFx1MjAxOXV0aWxpdFx1MDBlOSBwdWJsaXF1ZSwgbFx1MjAxOUFmbm9yIGNvbXB0YWl0IDEgNDk4IG1lbWJyZXMtYWRoXHUwMGU5cmVudHMgYXUgMzEgZFx1MDBlOWNlbWJyZSAyMDIyLiBEZXB1aXMgc2EgZnVzaW9uIGF2ZWMgbFx1MjAxOUFzc29jaWF0aW9uIGZyYW5cdTAwZTdhaXNlIHBvdXIgbFx1MjAxOWFzc3VyYW5jZSBkZSBsYSBxdWFsaXRcdTAwZTkgZW4gMjAwNCwgZWxsZSBmYWl0IHBhcnRpZSBkdSBHcm91cGUgQUZOT1IuIExcdTIwMTlBRk5PUiBcdTAwZTlkaXRlIGxhIGNvbGxlY3Rpb24gZGVzIG5vcm1lcyBORiBxdWkgaWRlbnRpZmllIGhhYml0dWVsbGVtZW50IHVuIGRvY3VtZW50IHBhciBsYSBmb3JtZSBORiBMIENDLUNDQyBkYW5zIGxhIG5vbWVuY2xhdHVyZSBuYXRpb25hbGUgZnJhblx1MDBlN2Fpc2UuJm5ic3A7TFx1MjAxOUFzc29jaWF0aW9uIGZyYW5cdTAwZTdhaXNlIGRlIG5vcm1hbGlzYXRpb24gKGFiclx1MDBlOWdcdTAwZTllIEFmbm9yIG91IEFGTk9SKSBlc3QgbFx1MjAxOW9yZ2FuaXNhdGlvbiBmcmFuXHUwMGU3YWlzZSBxdWkgcmVwclx1MDBlOXNlbnRlIGxhIEZyYW5jZSBhdXByXHUwMGU4cyBkZSBsXHUyMDE5T3JnYW5pc2F0aW9uIGludGVybmF0aW9uYWxlIGRlIG5vcm1hbGlzYXRpb24gKElTTykgZXQgZHUgQ29taXRcdTAwZTkgZXVyb3BcdTAwZTllbiBkZSBub3JtYWxpc2F0aW9uIChDRU4pLiBEZXB1aXMgbGUgMWVyIGphbnZpZXIgMjAxNCwgXHUwMGUwIGxhIHN1aXRlIGR1IHJhcHByb2NoZW1lbnQgZGUgbFx1MjAxOUFmbm9yIGVsbGUgZXN0IGF1c3NpIG1lbWJyZSBkdSBDb21pdFx1MDBlOSBldXJvcFx1MDBlOWVuIGRlIG5vcm1hbGlzYXRpb24gZW4gXHUwMGU5bGVjdHJvbmlxdWUgZXQgZW4gXHUwMGU5bGVjdHJvdGVjaG5pcXVlIChDRU5FTEVDKSBhdSBuaXZlYXUgZXVyb3BcdTAwZTllbiwgZXQgZGUgbGEgQ29tbWlzc2lvbiBcdTAwZTlsZWN0cm90ZWNobmlxdWUgaW50ZXJuYXRpb25hbGUgKENFSSkgYXUgbml2ZWF1IGludGVybmF0aW9uYWwuIExcdTIwMTlBc3NvY2lhdGlvbiBmcmFuXHUwMGU3YWlzZSBkZSBub3JtYWxpc2F0aW9uIGEgXHUwMGU5dFx1MDBlOSBjclx1MDBlOVx1MDBlOWUgZW4gMTkyNiA7IGVsbGUgZXN0IHBsYWNcdTAwZTllIHNvdXMgbGEgdHV0ZWxsZSBkdSBtaW5pc3RcdTAwZThyZSBjaGFyZ1x1MDBlOSBkZSBsXHUyMDE5aW5kdXN0cmllLiBTb24gclx1MDBmNGxlIGVzdCBwclx1MDBlOWNpc1x1MDBlOSBkYW5zIGxlIGRcdTAwZTljcmV0IFx1MjExNiAyMDA5XHUyMDEzNjk3IGR1IDE2IGp1aW4gMjAwOSByZWxhdGlmIFx1MDBlMCBsYSBub3JtYWxpc2F0aW9uLCBxdWkgbHVpIGNvbmZcdTAwZThyZSB1bmUgbWlzc2lvbiBkXHUyMDE5aW50XHUwMGU5clx1MDBlYXQgZ1x1MDBlOW5cdTAwZTlyYWwsIGRcdTAwZTljcmV0IG1vZGlmaVx1MDBlOSBwYXIgY2VsdWkgZHUgMTAgbm92ZW1icmUgMjAyMS4gXHUwMGMwIGNlIHRpdHJlLCBlbGxlIHBlclx1MDBlN29pdCB1bmUgc3VidmVudGlvbiBwdWJsaXF1ZSBjb3V2cmFudCB1bmUgcGFydGllIGRlIHNlcyBhY3Rpdml0XHUwMGU5cy4gRW4gMjAyMiwgY2Ugc291dGllbiByZXByXHUwMGU5c2VudGFpdCAzLDIgJSBkZXMgcHJvZHVpdHMgZHUgR3JvdXBlIEFGTk9SLCBkb250IGxcdTIwMTlhc3NvY2lhdGlvbiBjb25zdGl0dWUgbGEgaG9sZGluZy4gUmVjb25udWUgZFx1MjAxOXV0aWxpdFx1MDBlOSBwdWJsaXF1ZSwgbFx1MjAxOUFmbm9yIGNvbXB0YWl0IDEgNDk4IG1lbWJyZXMtYWRoXHUwMGU5cmVudHMgYXUgMzEgZFx1MDBlOWNlbWJyZSAyMDIyLiBEZXB1aXMgc2EgZnVzaW9uIGF2ZWMgbFx1MjAxOUFzc29jaWF0aW9uIGZyYW5cdTAwZTdhaXNlIHBvdXIgbFx1MjAxOWFzc3VyYW5jZSBkZSBsYSBxdWFsaXRcdTAwZTkgZW4gMjAwNCwgZWxsZSBmYWl0IHBhcnRpZSBkdSBHcm91cGUgQUZOT1IuIExcdTIwMTlBRk5PUiBcdTAwZTlkaXRlIGxhIGNvbGxlY3Rpb24gZGVzIG5vcm1lcyBORiBxdWkgaWRlbnRpZmllIGhhYml0dWVsbGVtZW50IHVuIGRvY3VtZW50IHBhciBsYSBmb3JtZSBORiBMIENDLUNDQyBkYW5zIGxhIG5vbWVuY2xhdHVyZSBuYXRpb25hbGUgZnJhblx1MDBlN2Fpc2UuPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoxNSwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjY4NjkiLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoic21hbGwiLCJkaXNwbGF5b24iOlsiZGVza3RvcCJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyNjg3MCIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJmb250U2l6ZSI6IjE4IiwibGluZUhlaWdodCI6IjIyIiwibGV0dGVyU3BhY2luZyI6IjAuMDVlbSIsImhlaWdodEFkZGl0aW9uIjowLCJwYWRkaW5nbHIiOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIn1dLCJjb250ZW50cyI6W10sInRpdGxlIjoiQm9sZCIsImluZGV4IjowLCJ0ZXh0IjoiPHA+RGFzIERldXRzY2hlIEluc3RpdHV0IGZcdTAwZmNyIE5vcm11bmcgZS5WLiAoRElOKSBpc3QgZGllIGJlZGV1dGVuZHN0ZSBuYXRpb25hbGUgTm9ybXVuZ3NvcmdhbmlzYXRpb24gaW4gZGVyIEJ1bmRlc3JlcHVibGlrIERldXRzY2hsYW5kLiBTaWUgd3VyZGUgYW0gMjIuIERlemVtYmVyIDE5MTcgdW50ZXIgZGVtIE5hbWVuIFx1MjAxZU5vcm1lbmF1c3NjaHVcdTAwZGYgZGVyIGRldXRzY2hlbiBJbmR1c3RyaWVcdTIwMWMgZ2Vnclx1MDBmY25kZXQuIEVpbmUgZXJzdGUgVW1iZW5lbm51bmcgZXJmb2xndGUgMTkyNiB6dSBcdTIwMWVEZXV0c2NoZXIgTm9ybWVuYXVzc2NodVx1MDBkZlx1MjAxYywgdW0gYXVzenVkclx1MDBmY2NrZW4sIGRhc3Mgc2ljaCBkYXMgQXJiZWl0c2dlYmlldCBuaWNodCBtZWhyIGF1ZiBkaWUgSW5kdXN0cmllIGJlc2Noclx1MDBlNG5rdGUuIERlciBoZXV0aWdlIE5hbWUgXHUyMDFlRElOIERldXRzY2hlcyBJbnN0aXR1dCBmXHUwMGZjciBOb3JtdW5nIGUuVi5cdTIwMWMgd3VyZGUgMTk3NSBpbSBadXNhbW1lbmhhbmcgbWl0IGRlbSB6d2lzY2hlbiBkZXIgT3JnYW5pc2F0aW9uIHVuZCBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQgYWJnZXNjaGxvc3NlbmVuIE5vcm1lbnZlcnRyYWcgZ2V3XHUwMGU0aGx0LiBFaW5lIHVudGVyIGRlciBMZWl0dW5nIHZvbiBBcmJlaXRzYXVzc2NoXHUwMGZjc3NlbiBkaWVzZXIgTm9ybXVuZ3NvcmdhbmlzYXRpb24gZXJhcmJlaXRldGUgTm9ybSB3aXJkIGFscyBESU4tTm9ybSBiZXplaWNobmV0LiBEYXMgRGV1dHNjaGUgSW5zdGl0dXQgZlx1MDBmY3IgTm9ybXVuZyBpc3QgZWluIGVpbmdldHJhZ2VuZXIgVmVyZWluLCB3aXJkIHByaXZhdHdpcnRzY2hhZnRsaWNoIGdldHJhZ2VuIHVuZCBiZWkgc2VpbmVuIGV1cm9wXHUwMGU0aXNjaGVuIHVuZCBpbnRlcm5hdGlvbmFsZW4gTm9ybXVuZ3Nha3Rpdml0XHUwMGU0dGVuIHZvbiBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQgYWxzIGVpbnppZ2UgbmF0aW9uYWxlIE5vcm11bmdzb3JnYW5pc2F0aW9uIHVudGVyc3RcdTAwZmN0enQuIEVzIGJpZXRldCBkZW4gc29nZW5hbm50ZW4gXHUyMDFlaW50ZXJlc3NpZXJ0ZW4gS3JlaXNlblx1MjAxYyAoSGVyc3RlbGxlciwgSGFuZGVsLCBJbmR1c3RyaWUsIFdpc3NlbnNjaGFmdCwgVmVyYnJhdWNoZXIsIFByXHUwMGZjZmluc3RpdHV0ZSB1bmQgQmVoXHUwMGY2cmRlbikgZWluIEZvcnVtLCBpbSBLb25zZW5zdmVyZmFocmVuIE5vcm1lbiB6dSBlcmFyYmVpdGVuLiBEZXIgaW50ZXJlc3NpZXJ0ZSBLcmVpcyBkZXIgVmVyYnJhdWNoZXIgd2lyZCBkdXJjaCBkZW4mbmJzcDtWZXJicmF1Y2hlcnJhdCBkZXMgRElOIHZlcnRyZXRlbi4gRGFzIERJTiBpc3QgTWl0Z2xpZWQgZGVyIEV1cm9wXHUwMGU0aXNjaGVuIEJld2VndW5nIERldXRzY2hsYW5kcy4gRGFzIERldXRzY2hlIEluc3RpdHV0IGZcdTAwZmNyIE5vcm11bmcgZS5WLiAoRElOKSBpc3QgZGllIGJlZGV1dGVuZHN0ZSBuYXRpb25hbGUgTm9ybXVuZ3NvcmdhbmlzYXRpb24gaW4gZGVyIEJ1bmRlc3JlcHVibGlrIERldXRzY2hsYW5kLiBTaWUgd3VyZGUgYW0gMjIuIERlemVtYmVyIDE5MTcgdW50ZXIgZGVtIE5hbWVuIFx1MjAxZU5vcm1lbmF1c3NjaHVcdTAwZGYgZGVyIGRldXRzY2hlbiBJbmR1c3RyaWVcdTIwMWMgZ2Vnclx1MDBmY25kZXQuIEVpbmUgZXJzdGUgVW1iZW5lbm51bmcgZXJmb2xndGUgMTkyNiB6dSBcdTIwMWVEZXV0c2NoZXIgTm9ybWVuYXVzc2NodVx1MDBkZlx1MjAxYywgdW0gYXVzenVkclx1MDBmY2NrZW4sIGRhc3Mgc2ljaCBkYXMgQXJiZWl0c2dlYmlldCBuaWNodCBtZWhyIGF1ZiBkaWUgSW5kdXN0cmllIGJlc2Noclx1MDBlNG5rdGUuIERlciBoZXV0aWdlIE5hbWUgXHUyMDFlRElOIERldXRzY2hlcyBJbnN0aXR1dCBmXHUwMGZjciBOb3JtdW5nIGUuVi5cdTIwMWMgd3VyZGUgMTk3NSBpbSBadXNhbW1lbmhhbmcgbWl0IGRlbSB6d2lzY2hlbiBkZXIgT3JnYW5pc2F0aW9uIHVuZCBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQgYWJnZXNjaGxvc3NlbmVuIE5vcm1lbnZlcnRyYWcgZ2V3XHUwMGU0aGx0LiBFaW5lIHVudGVyIGRlciBMZWl0dW5nIHZvbiBBcmJlaXRzYXVzc2NoXHUwMGZjc3NlbiBkaWVzZXIgTm9ybXVuZ3NvcmdhbmlzYXRpb24gZXJhcmJlaXRldGUgTm9ybSB3aXJkIGFscyBESU4tTm9ybSBiZXplaWNobmV0LiBEYXMgRGV1dHNjaGUgSW5zdGl0dXQgZlx1MDBmY3IgTm9ybXVuZyBpc3QgZWluIGVpbmdldHJhZ2VuZXIgVmVyZWluLCB3aXJkIHByaXZhdHdpcnRzY2hhZnRsaWNoIGdldHJhZ2VuIHVuZCBiZWkgc2VpbmVuIGV1cm9wXHUwMGU0aXNjaGVuIHVuZCBpbnRlcm5hdGlvbmFsZW4gTm9ybXVuZ3Nha3Rpdml0XHUwMGU0dGVuIHZvbiBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQgYWxzIGVpbnppZ2UgbmF0aW9uYWxlIE5vcm11bmdzb3JnYW5pc2F0aW9uIHVudGVyc3RcdTAwZmN0enQuIEVzIGJpZXRldCBkZW4gc29nZW5hbm50ZW4gXHUyMDFlaW50ZXJlc3NpZXJ0ZW4gS3JlaXNlblx1MjAxYyAoSGVyc3RlbGxlciwgSGFuZGVsLCBJbmR1c3RyaWUsIFdpc3NlbnNjaGFmdCwgVmVyYnJhdWNoZXIsIFByXHUwMGZjZmluc3RpdHV0ZSB1bmQgQmVoXHUwMGY2cmRlbikgZWluIEZvcnVtLCBpbSBLb25zZW5zdmVyZmFocmVuIE5vcm1lbiB6dSBlcmFyYmVpdGVuLiBEZXIgaW50ZXJlc3NpZXJ0ZSBLcmVpcyBkZXIgVmVyYnJhdWNoZXIgd2lyZCBkdXJjaCBkZW4mbmJzcDtWZXJicmF1Y2hlcnJhdCBkZXMgRElOIHZlcnRyZXRlbi4gRGFzIERJTiBpc3QgTWl0Z2xpZWQgZGVyIEV1cm9wXHUwMGU0aXNjaGVuIEJld2VndW5nIERldXRzY2hsYW5kcy4mbmJzcDs8XC9wPlxyXG5cclxuPHA+VGhlIEdlcm1hbiBJbnN0aXR1dGUgZm9yIFN0YW5kYXJkaXphdGlvbiAoRElOKSBpcyB0aGUgbW9zdCBpbXBvcnRhbnQgbmF0aW9uYWwgc3RhbmRhcmRzIG9yZ2FuaXphdGlvbiBpbiB0aGUgRmVkZXJhbCBSZXB1YmxpYyBvZiBHZXJtYW55LiBJdCB3YXMgZm91bmRlZCBvbiBEZWNlbWJlciAyMiwgMTkxNyB1bmRlciB0aGUgbmFtZSBcdTIwMWNTdGFuZGFyZHMgQ29tbWl0dGVlIG9mIEdlcm1hbiBJbmR1c3RyeVx1MjAxZC4gSXQgd2FzIGZpcnN0IHJlbmFtZWQgXHUyMDFjR2VybWFuIFN0YW5kYXJkcyBDb21taXR0ZWVcdTIwMWQgaW4gMTkyNiB0byBleHByZXNzIHRoZSBmYWN0IHRoYXQgaXRzIGZpZWxkIG9mIGFjdGl2aXR5IHdhcyBubyBsb25nZXIgbGltaXRlZCB0byBpbmR1c3RyeS4gVGhlIGN1cnJlbnQgbmFtZSBcdTIwMWNESU4gRGV1dHNjaGVzIEluc3RpdHV0IGZcdTAwZmNyIE5vcm11bmcgZS5WLlx1MjAxZCB3YXMgY2hvc2VuIGluIDE5NzUgaW4gY29ubmVjdGlvbiB3aXRoIHRoZSBzdGFuZGFyZHMgYWdyZWVtZW50IGNvbmNsdWRlZCBiZXR3ZWVuIHRoZSBvcmdhbml6YXRpb24gYW5kIHRoZSBGZWRlcmFsIFJlcHVibGljIG9mIEdlcm1hbnkuIEEgc3RhbmRhcmQgZGV2ZWxvcGVkIHVuZGVyIHRoZSBkaXJlY3Rpb24gb2Ygd29ya2luZyBjb21taXR0ZWVzIG9mIHRoaXMgc3RhbmRhcmRpemF0aW9uIG9yZ2FuaXphdGlvbiBpcyByZWZlcnJlZCB0byBhcyBhIERJTiBzdGFuZGFyZC4gVGhlIEdlcm1hbiBJbnN0aXR1dGUgZm9yIFN0YW5kYXJkaXphdGlvbiBpcyBhIHJlZ2lzdGVyZWQgYXNzb2NpYXRpb24sIHByaXZhdGVseSBmdW5kZWQgYW5kIHN1cHBvcnRlZCBpbiBpdHMgRXVyb3BlYW4gYW5kIGludGVybmF0aW9uYWwgc3RhbmRhcmRpemF0aW9uIGFjdGl2aXRpZXMgYnkgdGhlIEZlZGVyYWwgUmVwdWJsaWMgb2YgR2VybWFueSBhcyB0aGUgb25seSBuYXRpb25hbCBzdGFuZGFyZHMgb3JnYW5pemF0aW9uLiBJdCBvZmZlcnMgdGhlIHNvLWNhbGxlZCBcdTIwMWNpbnRlcmVzdGVkIHBhcnRpZXNcdTIwMWQgKG1hbnVmYWN0dXJlcnMsIHRyYWRlLCBpbmR1c3RyeSwgc2NpZW5jZSwgY29uc3VtZXJzLCB0ZXN0aW5nIGluc3RpdHV0ZXMgYW5kIGF1dGhvcml0aWVzKSBhIGZvcnVtIGZvciBkZXZlbG9waW5nIHN0YW5kYXJkcyBieSBjb25zZW5zdXMuIFRoZSBjb25zdW1lciBpbnRlcmVzdCBncm91cCBpcyByZXByZXNlbnRlZCBieSB0aGUgRElOIENvbnN1bWVyIENvdW5jaWwuIERJTiBpcyBhIG1lbWJlciBvZiB0aGUgRXVyb3BlYW4gTW92ZW1lbnQgb2YgR2VybWFueS4gVGhlIEdlcm1hbiBJbnN0aXR1dGUgZm9yIFN0YW5kYXJkaXphdGlvbiAoRElOKSBpcyB0aGUgbW9zdCBpbXBvcnRhbnQgbmF0aW9uYWwgc3RhbmRhcmRpemF0aW9uIG9yZ2FuaXphdGlvbiBpbiB0aGUgRmVkZXJhbCBSZXB1YmxpYyBvZiBHZXJtYW55LiBJdCB3YXMgZm91bmRlZCBvbiBEZWNlbWJlciAyMiwgMTkxNyB1bmRlciB0aGUgbmFtZSBcdTIwMWNOb3JtZW5hdXNzY2h1XHUwMGRmIGRlciBkPFwvcD5cclxuXHJcbjxwPkRFPFwvcD4iLCJjb2xvciI6IiIsImJhY2tncm91bmRDb2xvciI6IiIsIm51bUxpbmVzIjoyMCwiZmlyc3RPZlRocmVlIjpudWxsfSx7ImlkIjoiMjg2ODkiLCJ0eXBlIjoidGV4dCIsIndpZHRoIjoic21hbGwiLCJkaXNwbGF5b24iOlsibW9iaWxlIl0sImFsdGVybmF0ZXMiOlt7Il9pZCI6IjI4NjkwIiwiaW5kZXgiOjAsInRpdGxlIjoiIiwiZm9udEZhbWlseSI6Iidmb250LTE1OTM1JyIsImZvbnRTaXplIjoiMTgiLCJsaW5lSGVpZ2h0IjoiMjIiLCJsZXR0ZXJTcGFjaW5nIjoiMC4wNWVtIiwiaGVpZ2h0QWRkaXRpb24iOjAsInBhZGRpbmdsciI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJCb2xkIiwiaW5kZXgiOjAsInRleHQiOiI8cD5EYXMgRGV1dHNjaGUgSW5zdGl0dXQgZlx1MDBmY3IgTm9ybXVuZyBlLlYuIChESU4pIGlzdCBkaWUgYmVkZXV0ZW5kc3RlIG5hdGlvbmFsZSBOb3JtdW5nc29yZ2FuaXNhdGlvbiBpbiBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQuIFNpZSB3dXJkZSBhbSAyMi4gRGV6ZW1iZXIgMTkxNyB1bnRlciBkZW0gTmFtZW4gXHUyMDFlTm9ybWVuYXVzc2NodVx1MDBkZiBkZXIgZGV1dHNjaGVuIEluZHVzdHJpZVx1MjAxYyBnZWdyXHUwMGZjbmRldC4gRWluZSBlcnN0ZSBVbWJlbmVubnVuZyBlcmZvbGd0ZSAxOTI2IHp1IFx1MjAxZURldXRzY2hlciBOb3JtZW5hdXNzY2h1XHUwMGRmXHUyMDFjLCB1bSBhdXN6dWRyXHUwMGZjY2tlbiwgZGFzcyBzaWNoIGRhcyBBcmJlaXRzZ2ViaWV0IG5pY2h0IG1laHIgYXVmIGRpZSBJbmR1c3RyaWUgYmVzY2hyXHUwMGU0bmt0ZS4gRGVyIGhldXRpZ2UgTmFtZSBcdTIwMWVESU4gRGV1dHNjaGVzIEluc3RpdHV0IGZcdTAwZmNyIE5vcm11bmcgZS5WLlx1MjAxYyB3dXJkZSAxOTc1IGltIFp1c2FtbWVuaGFuZyBtaXQgZGVtIHp3aXNjaGVuIGRlciBPcmdhbmlzYXRpb24gdW5kIGRlciBCdW5kZXNyZXB1YmxpayBEZXV0c2NobGFuZCBhYmdlc2NobG9zc2VuZW4gTm9ybWVudmVydHJhZyBnZXdcdTAwZTRobHQuIEVpbmUgdW50ZXIgZGVyIExlaXR1bmcgdm9uIEFyYmVpdHNhdXNzY2hcdTAwZmNzc2VuIGRpZXNlciBOb3JtdW5nc29yZ2FuaXNhdGlvbiBlcmFyYmVpdGV0ZSBOb3JtIHdpcmQgYWxzIERJTi1Ob3JtIGJlemVpY2huZXQuIERhcyBEZXV0c2NoZSBJbnN0aXR1dCBmXHUwMGZjciBOb3JtdW5nIGlzdCBlaW4gZWluZ2V0cmFnZW5lciBWZXJlaW4sIHdpcmQgcHJpdmF0d2lydHNjaGFmdGxpY2ggZ2V0cmFnZW4gdW5kIGJlaSBzZWluZW4gZXVyb3BcdTAwZTRpc2NoZW4gdW5kIGludGVybmF0aW9uYWxlbiBOb3JtdW5nc2FrdGl2aXRcdTAwZTR0ZW4gdm9uIGRlciBCdW5kZXNyZXB1YmxpayBEZXV0c2NobGFuZCBhbHMgZWluemlnZSBuYXRpb25hbGUgTm9ybXVuZ3NvcmdhbmlzYXRpb24gdW50ZXJzdFx1MDBmY3R6dC4gRXMgYmlldGV0IGRlbiBzb2dlbmFubnRlbiBcdTIwMWVpbnRlcmVzc2llcnRlbiBLcmVpc2VuXHUyMDFjIChIZXJzdGVsbGVyLCBIYW5kZWwsIEluZHVzdHJpZSwgV2lzc2Vuc2NoYWZ0LCBWZXJicmF1Y2hlciwgUHJcdTAwZmNmaW5zdGl0dXRlIHVuZCBCZWhcdTAwZjZyZGVuKSBlaW4gRm9ydW0sIGltIEtvbnNlbnN2ZXJmYWhyZW4gTm9ybWVuIHp1IGVyYXJiZWl0ZW4uIERlciBpbnRlcmVzc2llcnRlIEtyZWlzIGRlciBWZXJicmF1Y2hlciB3aXJkIGR1cmNoIGRlbiZuYnNwO1ZlcmJyYXVjaGVycmF0IGRlcyBESU4gdmVydHJldGVuLiBEYXMgRElOIGlzdCBNaXRnbGllZCBkZXIgRXVyb3BcdTAwZTRpc2NoZW4gQmV3ZWd1bmcgRGV1dHNjaGxhbmRzLiBEYXMgRGV1dHNjaGUgSW5zdGl0dXQgZlx1MDBmY3IgTm9ybXVuZyBlLlYuIChESU4pIGlzdCBkaWUgYmVkZXV0ZW5kc3RlIG5hdGlvbmFsZSBOb3JtdW5nc29yZ2FuaXNhdGlvbiBpbiBkZXIgQnVuZGVzcmVwdWJsaWsgRGV1dHNjaGxhbmQuIFNpZSB3dXJkZSBhbSAyMi4gRGV6ZW1iZXIgMTkxNyB1bnRlciBkZW0gTmFtZW4gXHUyMDFlTm9ybWVuYXVzc2NodVx1MDBkZiBkZXIgZGV1dHNjaGVuIEluZHVzdHJpZVx1MjAxYyBnZWdyXHUwMGZjbmRldC4gRWluZSBlcnN0ZSBVbWJlbmVubnVuZyBlcmZvbGd0ZSAxOTI2IHp1IFx1MjAxZURldXRzY2hlciBOb3JtZW5hdXNzY2h1XHUwMGRmXHUyMDFjLCB1bSBhdXN6dWRyXHUwMGZjY2tlbiwgZGFzcyBzaWNoIGRhcyBBcmJlaXRzZ2ViaWV0IG5pY2h0IG1laHIgYXVmIGRpZSBJbmR1c3RyaWUgYmVzY2hyXHUwMGU0bmt0ZS4gRGVyIGhldXRpZ2UgTmFtZSBcdTIwMWVESU4gRGV1dHNjaGVzIEluc3RpdHV0IGZcdTAwZmNyIE5vcm11bmcgZS5WLlx1MjAxYyB3dXJkZSAxOTc1IGltIFp1c2FtbWVuaGFuZyBtaXQgZGVtIHp3aXNjaGVuIGRlciBPcmdhbmlzYXRpb24gdW5kIGRlciBCdW5kZXNyZXB1YmxpayBEZXV0c2NobGFuZCBhYmdlc2NobG9zc2VuZW4gTm9ybWVudmVydHJhZyBnZXdcdTAwZTRobHQuIEVpbmUgdW50ZXIgZGVyIExlaXR1bmcgdm9uIEFyYmVpdHNhdXNzY2hcdTAwZmNzc2VuIGRpZXNlciBOb3JtdW5nc29yZ2FuaXNhdGlvbiBlcmFyYmVpdGV0ZSBOb3JtIHdpcmQgYWxzIERJTi1Ob3JtIGJlemVpY2huZXQuIERhcyBEZXV0c2NoZSBJbnN0aXR1dCBmXHUwMGZjciBOb3JtdW5nIGlzdCBlaW4gZWluZ2V0cmFnZW5lciBWZXJlaW4sIHdpcmQgcHJpdmF0d2lydHNjaGFmdGxpY2ggZ2V0cmFnZW4gdW5kIGJlaSBzZWluZW4gZXVyb3BcdTAwZTRpc2NoZW4gdW5kIGludGVybmF0aW9uYWxlbiBOb3JtdW5nc2FrdGl2aXRcdTAwZTR0ZW4gdm9uIGRlciBCdW5kZXNyZXB1YmxpayBEZXV0c2NobGFuZCBhbHMgZWluemlnZSBuYXRpb25hbGUgTm9ybXVuZ3NvcmdhbmlzYXRpb24gdW50ZXJzdFx1MDBmY3R6dC4gRXMgYmlldGV0IGRlbiBzb2dlbmFubnRlbiBcdTIwMWVpbnRlcmVzc2llcnRlbiBLcmVpc2VuXHUyMDFjIChIZXJzdGVsbGVyLCBIYW5kZWwsIEluZHVzdHJpZSwgV2lzc2Vuc2NoYWZ0LCBWZXJicmF1Y2hlciwgUHJcdTAwZmNmaW5zdGl0dXRlIHVuZCBCZWhcdTAwZjZyZGVuKSBlaW4gRm9ydW0sIGltIEtvbnNlbnN2ZXJmYWhyZW4gTm9ybWVuIHp1IGVyYXJiZWl0ZW4uIERlciBpbnRlcmVzc2llcnRlIEtyZWlzIGRlciBWZXJicmF1Y2hlciB3aXJkIGR1cmNoIGRlbiZuYnNwO1ZlcmJyYXVjaGVycmF0IGRlcyBESU4gdmVydHJldGVuLiBEYXMgRElOIGlzdCBNaXRnbGllZCBkZXIgRXVyb3BcdTAwZTRpc2NoZW4gQmV3ZWd1bmcgRGV1dHNjaGxhbmRzLiZuYnNwOzxcL3A+XHJcblxyXG48cD5UaGUgR2VybWFuIEluc3RpdHV0ZSBmb3IgU3RhbmRhcmRpemF0aW9uIChESU4pIGlzIHRoZSBtb3N0IGltcG9ydGFudCBuYXRpb25hbCBzdGFuZGFyZHMgb3JnYW5pemF0aW9uIGluIHRoZSBGZWRlcmFsIFJlcHVibGljIG9mIEdlcm1hbnkuIEl0IHdhcyBmb3VuZGVkIG9uIERlY2VtYmVyIDIyLCAxOTE3IHVuZGVyIHRoZSBuYW1lIFx1MjAxY1N0YW5kYXJkcyBDb21taXR0ZWUgb2YgR2VybWFuIEluZHVzdHJ5XHUyMDFkLiBJdCB3YXMgZmlyc3QgcmVuYW1lZCBcdTIwMWNHZXJtYW4gU3RhbmRhcmRzIENvbW1pdHRlZVx1MjAxZCBpbiAxOTI2IHRvIGV4cHJlc3MgdGhlIGZhY3QgdGhhdCBpdHMgZmllbGQgb2YgYWN0aXZpdHkgd2FzIG5vIGxvbmdlciBsaW1pdGVkIHRvIGluZHVzdHJ5LiBUaGUgY3VycmVudCBuYW1lIFx1MjAxY0RJTiBEZXV0c2NoZXMgSW5zdGl0dXQgZlx1MDBmY3IgTm9ybXVuZyBlLlYuXHUyMDFkIHdhcyBjaG9zZW4gaW4gMTk3NSBpbiBjb25uZWN0aW9uIHdpdGggdGhlIHN0YW5kYXJkcyBhZ3JlZW1lbnQgY29uY2x1ZGVkIGJldHdlZW4gdGhlIG9yZ2FuaXphdGlvbiBhbmQgdGhlIEZlZGVyYWwgUmVwdWJsaWMgb2YgR2VybWFueS4gQSBzdGFuZGFyZCBkZXZlbG9wZWQgdW5kZXIgdGhlIGRpcmVjdGlvbiBvZiB3b3JraW5nIGNvbW1pdHRlZXMgb2YgdGhpcyBzdGFuZGFyZGl6YXRpb24gb3JnYW5pemF0aW9uIGlzIHJlZmVycmVkIHRvIGFzIGEgRElOIHN0YW5kYXJkLiBUaGUgR2VybWFuIEluc3RpdHV0ZSBmb3IgU3RhbmRhcmRpemF0aW9uIGlzIGEgcmVnaXN0ZXJlZCBhc3NvY2lhdGlvbiwgcHJpdmF0ZWx5IGZ1bmRlZCBhbmQgc3VwcG9ydGVkIGluIGl0cyBFdXJvcGVhbiBhbmQgaW50ZXJuYXRpb25hbCBzdGFuZGFyZGl6YXRpb24gYWN0aXZpdGllcyBieSB0aGUgRmVkZXJhbCBSZXB1YmxpYyBvZiBHZXJtYW55IGFzIHRoZSBvbmx5IG5hdGlvbmFsIHN0YW5kYXJkcyBvcmdhbml6YXRpb24uIEl0IG9mZmVycyB0aGUgc28tY2FsbGVkIFx1MjAxY2ludGVyZXN0ZWQgcGFydGllc1x1MjAxZCAobWFudWZhY3R1cmVycywgdHJhZGUsIGluZHVzdHJ5LCBzY2llbmNlLCBjb25zdW1lcnMsIHRlc3RpbmcgaW5zdGl0dXRlcyBhbmQgYXV0aG9yaXRpZXMpIGEgZm9ydW0gZm9yIGRldmVsb3Bpbmcgc3RhbmRhcmRzIGJ5IGNvbnNlbnN1cy4gVGhlIGNvbnN1bWVyIGludGVyZXN0IGdyb3VwIGlzIHJlcHJlc2VudGVkIGJ5IHRoZSBESU4gQ29uc3VtZXIgQ291bmNpbC4gRElOIGlzIGEgbWVtYmVyIG9mIHRoZSBFdXJvcGVhbiBNb3ZlbWVudCBvZiBHZXJtYW55LiBUaGUgR2VybWFuIEluc3RpdHV0ZSBmb3IgU3RhbmRhcmRpemF0aW9uIChESU4pIGlzIHRoZSBtb3N0IGltcG9ydGFudCBuYXRpb25hbCBzdGFuZGFyZGl6YXRpb24gb3JnYW5pemF0aW9uIGluIHRoZSBGZWRlcmFsIFJlcHVibGljIG9mIEdlcm1hbnkuIEl0IHdhcyBmb3VuZGVkIG9uIERlY2VtYmVyIDIyLCAxOTE3IHVuZGVyIHRoZSBuYW1lIFx1MjAxY05vcm1lbmF1c3NjaHVcdTAwZGYgZGVyIGQ8XC9wPlxyXG5cclxuPHA+REU8XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjIwLCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyNjg3MSIsInR5cGUiOiJ0ZXh0Iiwid2lkdGgiOiJzbWFsbCIsImRpc3BsYXlvbiI6WyJkZXNrdG9wIl0sImFsdGVybmF0ZXMiOlt7Il9pZCI6IjI2ODcyIiwiaW5kZXgiOjAsInRpdGxlIjoiIiwiZm9udEZhbWlseSI6Iidmb250LTE1OTM1JyIsImZvbnRTaXplIjoiMTUiLCJsaW5lSGVpZ2h0IjoiMTkiLCJsZXR0ZXJTcGFjaW5nIjoiMC4wNWVtIiwiaGVpZ2h0QWRkaXRpb24iOjAsInBhZGRpbmdsciI6ZmFsc2UsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIifV0sImNvbnRlbnRzIjpbXSwidGl0bGUiOiJCb2xkIiwiaW5kZXgiOjAsInRleHQiOiI8cD5BdWZnYWJlIGRlcyBESU4gaXN0IGVzLCB6dW0gTnV0emVuIGRlciBBbGxnZW1laW5oZWl0IHVudGVyIFdhaHJ1bmcgZGVzIFx1MDBmNmZmZW50bGljaGVuIEludGVyZXNzZXMgZGllIE5vcm11bmcgYW56dXJlZ2VuLCB6dSBvcmdhbmlzaWVyZW4sIHp1IHN0ZXVlcm4gdW5kIHp1IG1vZGVyaWVyZW4uIERpZSBBcmJlaXRzZXJnZWJuaXNzZSBkaWVuZW4gZGVyIElubm92YXRpb24sIGRlciBSYXRpb25hbGlzaWVydW5nLCBWZXJzdFx1MDBlNG5kaWd1bmcgaW4gV2lydHNjaGFmdCwgV2lzc2Vuc2NoYWZ0LCBWZXJ3YWx0dW5nIHVuZCBcdTAwZDZmZmVudGxpY2hrZWl0LCBkZXIgU2ljaGVydW5nIHZvbiBHZWJyYXVjaHN0YXVnbGljaGtlaXQsIFF1YWxpdFx1MDBlNHRzc2ljaGVydW5nLCBLb21wYXRpYmlsaXRcdTAwZTR0LCBBdXN0YXVzY2hiYXJrZWl0LCBHZXN1bmRoZWl0LCBTaWNoZXJoZWl0LCBkZW0gVmVyYnJhdWNoZXJzY2h1dHosIEFyYmVpdHNzY2h1dHogdW5kIGRlbSBVbXdlbHRzY2h1dHouIEJlaSBpaHJlciBFcnN0ZWxsdW5nIHdpcmQgYW5nZXN0cmVidCwgZGFzcyBkaWUgYWxsZ2VtZWluIGFuZXJrYW5udGVuIFJlZ2VsbiBkZXIgVGVjaG5payBlaW5nZWhhbHRlbiB3ZXJkZW4gdW5kIGRlciBha3R1ZWxsZSBTdGFuZCBkZXIgVGVjaG5payBiZXJcdTAwZmNja3NpY2h0aWd0IHdpcmQuIERpZSBlbGVrdHJvdGVjaG5pc2NoZW4gVGhlbWVuIHdlcmRlbiB2b24gRElOIHVuZCBkZW0gZGV1dHNjaGVuIFZlcmJhbmQgZGVyIEVsZWt0cm90ZWNobmlrIChWREUpIGdlbWVpbnNhbSBpbiBkZXIgREtFIERldXRzY2hlIEtvbW1pc3Npb24gRWxla3Ryb3RlY2huaWsgRWxla3Ryb25payBJbmZvcm1hdGlvbnN0ZWNobmlrIGltIERJTiB1bmQgVkRFIGJlYXJiZWl0ZXQuIERhcyBESU4gYXJiZWl0ZXQgaW4gZGVuIGludGVybmF0aW9uYWxlbiB1bmQgZXVyb3BcdTAwZTRpc2NoZW4gTm9ybWVuZ3JlbWllbiBJU08gdW5kIENFTiB1bmQgaW4gZGVuIGVsZWt0cm90ZWNobmlzY2hlbiBPcmdhbmlzYXRpb25lbiBJRUMgdW5kIENFTkVMRUMgbWl0LCB1bSBkaWUgZGV1dHNjaGVuIEludGVyZXNzZW4genUgdmVydHJldGVuIHVuZCBkZW4gaW50ZXJuYXRpb25hbGVuIGZyZWllbiBXYXJlbnZlcmtlaHIgenUgZlx1MDBmNnJkZXJuLiBFcyBvcmdhbmlzaWVydCBkaWUgRWluZ2xpZWRlcnVuZyBpbnRlcm5hdGlvbmFsZXIgTm9ybWVuIGluIGRhcyBkZXV0c2NoZSBOb3JtZW53ZXJrLiBJbiBkZXIgU2Nod2VpeiBsZWlzdGV0IGRpZSBTY2h3ZWl6ZXJpc2NoZSBOb3JtZW4tVmVyZWluaWd1bmcgKFNOVikgdW5kIGluIFx1MDBkNnN0ZXJyZWljaCBkYXMgQXVzdHJpYW4gU3RhbmRhcmRzIEludGVybmF0aW9uYWwgKFx1MDBkNk5PUk0pIHZlcmdsZWljaGJhcmUgQXJiZWl0LiBBdWZnYWJlIGRlcyBESU4gaXN0IGVzLCB6dW0gTnV0emVuIGRlciBBbGxnZW1laW5oZWl0IHVudGVyIFdhaHJ1bmcgZGVzIFx1MDBmNmZmZW50bGljaGVuIEludGVyZXNzZXMgZGllIE5vcm11bmcgYW56dXJlZ2VuLCB6dSBvcmdhbmlzaWVyZW4sIHp1IHN0ZXVlcm4gdW5kIHp1IG1vZGVyaWVyZW4uIERpZSBBcmJlaXRzZXJnZWJuaXNzZSBkaWVuZW4gZGVyIElubm92YXRpb24sIGRlciBSYXRpb25hbGlzaWVydW5nLCBWZXJzdFx1MDBlNG5kaWd1bmcgaW4gV2lydHNjaGFmdCwgV2lzc2Vuc2NoYWZ0LCBWZXJ3YWx0dW5nIHVuZCBcdTAwZDZmZmVudGxpY2hrZWl0LCBkZXIgU2ljaGVydW5nIHZvbiBHZWJyYXVjaHN0YXVnbGljaGtlaXQsIFF1YWxpdFx1MDBlNHRzc2ljaGVydW5nLCBLb21wYXRpYmlsaXRcdTAwZTR0LCBBdXN0YXVzY2hiYXJrZWl0LCBHZXN1bmRoZWl0LCBTaWNoZXJoZWl0LCBkZW0gVmVyYnJhdWNoZXJzY2h1dHosIEFyYmVpdHNzY2h1dHogdW5kIGRlbSBVbXdlbHRzY2h1dHouIEJlaSBpaHJlciBFcnN0ZWxsdW5nIHdpcmQgYW5nZXN0cmVidCwgZGFzcyBkaWUgYWxsZ2VtZWluIGFuZXJrYW5udGVuIFJlZ2VsbiBkZXIgVGVjaG5payBlaW5nZWhhbHRlbiB3ZXJkZW4gdW5kIGRlciBha3R1ZWxsZSBTdGFuZCBkZXIgVGVjaG5payBiZXJcdTAwZmNja3NpY2h0aWd0IHdpcmQuIERpZSBlbGVrdHJvdGVjaG5pc2NoZW4gVGhlbWVuIHdlcmRlbiB2b24gRElOIHVuZCBkZW0gZGV1dHNjaGVuIFZlcmJhbmQgZGVyIEVsZWt0cm90ZWNobmlrIChWREUpIGdlbWVpbnNhbSBpbiBkZXIgREtFIERldXRzY2hlIEtvbW1pc3Npb24gRWxla3Ryb3RlY2huaWsgRWxla3Ryb25payBJbmZvcm1hdGlvbnN0ZWNobmlrIGltIERJTiB1bmQgVkRFIGJlYXJiZWl0ZXQuIERhcyBESU4gYXJiZWl0ZXQgaW4gZGVuIGludGVybmF0aW9uYWxlbiB1bmQgZXVyb3BcdTAwZTRpc2NoZW4gTm9ybWVuZ3JlbWllbiBJU08gdW5kIENFTiB1bmQgaW4gZGVuIGVsZWt0cm90ZWNobmlzY2hlbiBPcmdhbmlzYXRpb25lbiBJRUMgdW5kIENFTkVMRUMgbWl0LCB1bSBkaWUgZGV1dHNjaGVuIEludGVyZXNzZW4genUgdmVydHJldGVuIHVuZCBkZW4gaW50ZXJuYXRpb25hbGVuIGZyZWllbiBXYXJlbnZlcmtlaHIgenUgZlx1MDBmNnJkZXJuLiBFcyBvcmdhbmlzaWVydCBkaWUgRWluZ2xpZWRlcnVuZyBpbnRlcm5hdGlvbmFsZXIgTm9ybWVuIGluIGRhcyBkZXV0c2NoZSBOb3JtZW53ZXJrLiBJbiBkZXIgU2Nod2VpeiBsZWlzdGV0IGRpZSBTY2h3ZWl6ZXJpc2NoZSBOb3JtZW4tVmVyZWluaWd1bmcgKFNOVikgdW5kIGluIFx1MDBkNnN0ZXJyZWljaCBkYXMgQXVzdHJpYW4gU3RhbmRhcmRzIEludGVybmF0aW9uYWwgKFx1MDBkNk5PUk0pIHZlcmdsZWljaGJhcmUgQXJiZWl0LjxcL3A+IiwiY29sb3IiOiIiLCJiYWNrZ3JvdW5kQ29sb3IiOiIiLCJudW1MaW5lcyI6MjMsImZpcnN0T2ZUaHJlZSI6bnVsbH0seyJpZCI6IjI4NjkxIiwidHlwZSI6InRleHQiLCJ3aWR0aCI6InNtYWxsIiwiZGlzcGxheW9uIjpbIm1vYmlsZSJdLCJhbHRlcm5hdGVzIjpbeyJfaWQiOiIyODY5MiIsImluZGV4IjowLCJ0aXRsZSI6IiIsImZvbnRGYW1pbHkiOiInZm9udC0xNTkzNSciLCJmb250U2l6ZSI6IjE1IiwibGluZUhlaWdodCI6IjE5IiwibGV0dGVyU3BhY2luZyI6IjAuMDVlbSIsImhlaWdodEFkZGl0aW9uIjowLCJwYWRkaW5nbHIiOmZhbHNlLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIn1dLCJjb250ZW50cyI6W10sInRpdGxlIjoiQm9sZCIsImluZGV4IjowLCJ0ZXh0IjoiPHA+QXVmZ2FiZSBkZXMgRElOIGlzdCBlcywgenVtIE51dHplbiBkZXIgQWxsZ2VtZWluaGVpdCB1bnRlciBXYWhydW5nIGRlcyBcdTAwZjZmZmVudGxpY2hlbiBJbnRlcmVzc2VzIGRpZSBOb3JtdW5nIGFuenVyZWdlbiwgenUgb3JnYW5pc2llcmVuLCB6dSBzdGV1ZXJuIHVuZCB6dSBtb2RlcmllcmVuLiBEaWUgQXJiZWl0c2VyZ2Vibmlzc2UgZGllbmVuIGRlciBJbm5vdmF0aW9uLCBkZXIgUmF0aW9uYWxpc2llcnVuZywgVmVyc3RcdTAwZTRuZGlndW5nIGluIFdpcnRzY2hhZnQsIFdpc3NlbnNjaGFmdCwgVmVyd2FsdHVuZyB1bmQgXHUwMGQ2ZmZlbnRsaWNoa2VpdCwgZGVyIFNpY2hlcnVuZyB2b24gR2VicmF1Y2hzdGF1Z2xpY2hrZWl0LCBRdWFsaXRcdTAwZTR0c3NpY2hlcnVuZywgS29tcGF0aWJpbGl0XHUwMGU0dCwgQXVzdGF1c2NoYmFya2VpdCwgR2VzdW5kaGVpdCwgU2ljaGVyaGVpdCwgZGVtIFZlcmJyYXVjaGVyc2NodXR6LCBBcmJlaXRzc2NodXR6IHVuZCBkZW0gVW13ZWx0c2NodXR6LiBCZWkgaWhyZXIgRXJzdGVsbHVuZyB3aXJkIGFuZ2VzdHJlYnQsIGRhc3MgZGllIGFsbGdlbWVpbiBhbmVya2FubnRlbiBSZWdlbG4gZGVyIFRlY2huaWsgZWluZ2VoYWx0ZW4gd2VyZGVuIHVuZCBkZXIgYWt0dWVsbGUgU3RhbmQgZGVyIFRlY2huaWsgYmVyXHUwMGZjY2tzaWNodGlndCB3aXJkLiBEaWUgZWxla3Ryb3RlY2huaXNjaGVuIFRoZW1lbiB3ZXJkZW4gdm9uIERJTiB1bmQgZGVtIGRldXRzY2hlbiBWZXJiYW5kIGRlciBFbGVrdHJvdGVjaG5payAoVkRFKSBnZW1laW5zYW0gaW4gZGVyIERLRSBEZXV0c2NoZSBLb21taXNzaW9uIEVsZWt0cm90ZWNobmlrIEVsZWt0cm9uaWsgSW5mb3JtYXRpb25zdGVjaG5payBpbSBESU4gdW5kIFZERSBiZWFyYmVpdGV0LiBEYXMgRElOIGFyYmVpdGV0IGluIGRlbiBpbnRlcm5hdGlvbmFsZW4gdW5kIGV1cm9wXHUwMGU0aXNjaGVuIE5vcm1lbmdyZW1pZW4gSVNPIHVuZCBDRU4gdW5kIGluIGRlbiBlbGVrdHJvdGVjaG5pc2NoZW4gT3JnYW5pc2F0aW9uZW4gSUVDIHVuZCBDRU5FTEVDIG1pdCwgdW0gZGllIGRldXRzY2hlbiBJbnRlcmVzc2VuIHp1IHZlcnRyZXRlbiB1bmQgZGVuIGludGVybmF0aW9uYWxlbiBmcmVpZW4gV2FyZW52ZXJrZWhyIHp1IGZcdTAwZjZyZGVybi4gRXMgb3JnYW5pc2llcnQgZGllIEVpbmdsaWVkZXJ1bmcgaW50ZXJuYXRpb25hbGVyIE5vcm1lbiBpbiBkYXMgZGV1dHNjaGUgTm9ybWVud2Vyay4gSW4gZGVyIFNjaHdlaXogbGVpc3RldCBkaWUgU2Nod2VpemVyaXNjaGUgTm9ybWVuLVZlcmVpbmlndW5nIChTTlYpIHVuZCBpbiBcdTAwZDZzdGVycmVpY2ggZGFzIEF1c3RyaWFuIFN0YW5kYXJkcyBJbnRlcm5hdGlvbmFsIChcdTAwZDZOT1JNKSB2ZXJnbGVpY2hiYXJlIEFyYmVpdC4gQXVmZ2FiZSBkZXMgRElOIGlzdCBlcywgenVtIE51dHplbiBkZXIgQWxsZ2VtZWluaGVpdCB1bnRlciBXYWhydW5nIGRlcyBcdTAwZjZmZmVudGxpY2hlbiBJbnRlcmVzc2VzIGRpZSBOb3JtdW5nIGFuenVyZWdlbiwgenUgb3JnYW5pc2llcmVuLCB6dSBzdGV1ZXJuIHVuZCB6dSBtb2RlcmllcmVuLiBEaWUgQXJiZWl0c2VyZ2Vibmlzc2UgZGllbmVuIGRlciBJbm5vdmF0aW9uLCBkZXIgUmF0aW9uYWxpc2llcnVuZywgVmVyc3RcdTAwZTRuZGlndW5nIGluIFdpcnRzY2hhZnQsIFdpc3NlbnNjaGFmdCwgVmVyd2FsdHVuZyB1bmQgXHUwMGQ2ZmZlbnRsaWNoa2VpdCwgZGVyIFNpY2hlcnVuZyB2b24gR2VicmF1Y2hzdGF1Z2xpY2hrZWl0LCBRdWFsaXRcdTAwZTR0c3NpY2hlcnVuZywgS29tcGF0aWJpbGl0XHUwMGU0dCwgQXVzdGF1c2NoYmFya2VpdCwgR2VzdW5kaGVpdCwgU2ljaGVyaGVpdCwgZGVtIFZlcmJyYXVjaGVyc2NodXR6LCBBcmJlaXRzc2NodXR6IHVuZCBkZW0gVW13ZWx0c2NodXR6LiBCZWkgaWhyZXIgRXJzdGVsbHVuZyB3aXJkIGFuZ2VzdHJlYnQsIGRhc3MgZGllIGFsbGdlbWVpbiBhbmVya2FubnRlbiBSZWdlbG4gZGVyIFRlY2huaWsgZWluZ2VoYWx0ZW4gd2VyZGVuIHVuZCBkZXIgYWt0dWVsbGUgU3RhbmQgZGVyIFRlY2huaWsgYmVyXHUwMGZjY2tzaWNodGlndCB3aXJkLiBEaWUgZWxla3Ryb3RlY2huaXNjaGVuIFRoZW1lbiB3ZXJkZW4gdm9uIERJTiB1bmQgZGVtIGRldXRzY2hlbiBWZXJiYW5kIGRlciBFbGVrdHJvdGVjaG5payAoVkRFKSBnZW1laW5zYW0gaW4gZGVyIERLRSBEZXV0c2NoZSBLb21taXNzaW9uIEVsZWt0cm90ZWNobmlrIEVsZWt0cm9uaWsgSW5mb3JtYXRpb25zdGVjaG5payBpbSBESU4gdW5kIFZERSBiZWFyYmVpdGV0LiBEYXMgRElOIGFyYmVpdGV0IGluIGRlbiBpbnRlcm5hdGlvbmFsZW4gdW5kIGV1cm9wXHUwMGU0aXNjaGVuIE5vcm1lbmdyZW1pZW4gSVNPIHVuZCBDRU4gdW5kIGluIGRlbiBlbGVrdHJvdGVjaG5pc2NoZW4gT3JnYW5pc2F0aW9uZW4gSUVDIHVuZCBDRU5FTEVDIG1pdCwgdW0gZGllIGRldXRzY2hlbiBJbnRlcmVzc2VuIHp1IHZlcnRyZXRlbiB1bmQgZGVuIGludGVybmF0aW9uYWxlbiBmcmVpZW4gV2FyZW52ZXJrZWhyIHp1IGZcdTAwZjZyZGVybi4gRXMgb3JnYW5pc2llcnQgZGllIEVpbmdsaWVkZXJ1bmcgaW50ZXJuYXRpb25hbGVyIE5vcm1lbiBpbiBkYXMgZGV1dHNjaGUgTm9ybWVud2Vyay4gSW4gZGVyIFNjaHdlaXogbGVpc3RldCBkaWUgU2Nod2VpemVyaXNjaGUgTm9ybWVuLVZlcmVpbmlndW5nIChTTlYpIHVuZCBpbiBcdTAwZDZzdGVycmVpY2ggZGFzIEF1c3RyaWFuIFN0YW5kYXJkcyBJbnRlcm5hdGlvbmFsIChcdTAwZDZOT1JNKSB2ZXJnbGVpY2hiYXJlIEFyYmVpdC48XC9wPiIsImNvbG9yIjoiIiwiYmFja2dyb3VuZENvbG9yIjoiIiwibnVtTGluZXMiOjIzLCJmaXJzdE9mVGhyZWUiOm51bGx9LHsiaWQiOiIyODYxNyIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJkZXNrdG9wIl0sImFsdGVybmF0ZXMiOltdLCJjb250ZW50cyI6W3siaW5kZXgiOjAsInR5cGUiOiJ0ZXh0IiwiZm9udEZhbWlseSI6Iidmb250LTE1OTM1JyIsImxpbmVIZWlnaHQiOiIxIiwibGV0dGVyU3BhY2luZyI6Ii0wLjAxZW0iLCJmb250RmVhdHVyZVNldHRpbmdzIjoiIiwibWFyZ2luVG9wIjoiLTAuMTVlbSIsInRleHQiOiJNZWFzdXJlIFR3aWNlLCA8YnIgXC8+XHJcbkN1dCBPbmNlLiIsImNvbG9yIjoiMDAwMDAwIiwiYmFja2dyb3VuZENvbG9yIjpudWxsLCJoaWRlQm9yZGVyIjpmYWxzZX1dLCJpbmRleCI6MCwidGl0bGUiOiJCb2xkIiwicmF0aW8iOiIzLjMzIiwicmVzaXplZ3JvdXAiOm51bGx9LHsiaWQiOiIyODcwOSIsInR5cGUiOiJzYW1wbGUiLCJ3aWR0aCI6InhsYXJnZSIsImRpc3BsYXlvbiI6WyJtb2JpbGUiXSwiYWx0ZXJuYXRlcyI6W10sImNvbnRlbnRzIjpbeyJpbmRleCI6MCwidHlwZSI6InRleHQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzUnIiwibGluZUhlaWdodCI6IjAuOTUiLCJsZXR0ZXJTcGFjaW5nIjoiLTAuMDFlbSIsImZvbnRGZWF0dXJlU2V0dGluZ3MiOiIiLCJtYXJnaW5Ub3AiOiItMC4xNWVtIiwidGV4dCI6Ik1lYXN1cmUgPGJyIFwvPlxyXG5Ud2ljZSwgPGJyIFwvPlxyXG5DdXQgT25jZS4iLCJjb2xvciI6IjAwMDAwMCIsImJhY2tncm91bmRDb2xvciI6bnVsbCwiaGlkZUJvcmRlciI6ZmFsc2V9XSwiaW5kZXgiOjAsInRpdGxlIjoiQm9sZCIsInJhdGlvIjoiMS41NCIsInJlc2l6ZWdyb3VwIjpudWxsfV0=

Special Features

1/9
9

Typetester

eyJmb250cyI6W3siX2lkIjoiMTUyNzMiLCJuYW1lIjoiUmVndWxhciIsImZvbnRGYW1pbHkiOiInZm9udC0xNTI3MycifSx7Il9pZCI6IjE1OTM1IiwibmFtZSI6IkJvbGQiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzUnIn0seyJfaWQiOiIxNTkzNiIsIm5hbWUiOiJJdGFsaWMiLCJmb250RmFtaWx5IjoiJ2ZvbnQtMTU5MzYnIn1dLCJzdHlsaXN0aWNzZXRzIjpbeyJpbmRleCI6MCwiX2lkIjoiMjg4MzQiLCJ0aXRsZSI6IlN0YWNrZWQiLCJmb250RmVhdHVyZVNldHRpbmdzIjoiJ3NzMDEnIn0seyJpbmRleCI6MSwiX2lkIjoiMjg4MzkiLCJ0aXRsZSI6IjAyIiwiZm9udEZlYXR1cmVTZXR0aW5ncyI6IidzczAyJyJ9XSwidmFyaWFibGVheGVzIjpbXSwicHJlc2V0cyI6W119
Regular
Stylistic Set

Glyphs Overview

Letters

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

Figures

0
1
2
3
4
5
6
7
8
9

Latin Supplement and Extension

Á
Ă
Â
Ä
À
Ā
Ą
Å
Ã
Æ
Ǽ
Ć
Č
Ç
Ĉ
Ċ
Ð
Ď
Đ
É
Ě
Ê
Ë
Ė
È
Ē
Ę
Ğ
Ĝ
Ģ
Ġ
Ĥ
Í
Î
Ï
İ
Ì
Ī
Į
Ķ
Ĺ
Ľ
Ļ
Ŀ
Ł
Ń
Ň
Ņ
Ñ
Ó
Ô
Ö
Ò
Ő
Ō
Ø
Õ
Œ
Þ
Ŕ
Ř
Ŗ
Ś
Š
Ş
Ŝ
Ș
Ť
Ţ
Ț
Ú
Ŭ
Û
Ü
Ù
Ű
Ū
Ų
Ů
Ũ
Ŵ
Ý
Ŷ
Ÿ
Ź
Ž
Ż
á
ă
â
ä
à
ā
ą
å
ã
æ
ǽ
ć
č
ç
ĉ
ċ
ð
ď
đ
é
ě
ê
ë
ė
è
ē
ę
ğ
ĝ
ģ
ġ
ĥ
ı
í
î
ï
ì
ī
į
ȷ
ķ
ĺ
ľ
ļ
ŀ
ł
ń
ň
ņ
ñ
ó
ô
ö
ò
ő
ō
ø
õ
œ
þ
ŕ
ř
ŗ
ś
š
ş
ŝ
ș
ß
ť
ţ
ț
ú
ŭ
û
ü
ù
ű
ū
ų
ů
ũ
ŵ
ý
ŷ
ÿ
ź
ž
ż

Ligatures

fi
fl
ff
ffi
ffl

Stylistic Sets

½
¼
¾

Punctuation and Symbols

.
,
:
;
¡
!
¿
?
(
)
[
]
{
}
*
@
&
#
|
%
©
®
-
_
°
/
\
«
»
'
"

Case Sensitive Forms

:
¡
¿
(
)
{
}
[
]
-
«
»

Superscript and Subscript

2
3
2
3

Fractions and Ordinals

½
¼
¾
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
ª
º

Currency and Mathematical Operators

$
¢
£
¥
+
×
÷
=
>
<
±
~

Tabular Figures

0
1
2
3
4
5
6
7
8
9

Square Figures

Circled Letters

Roman Numbers

Arrows

OpenType Features

Case Sensitive Forms

¿QUÉ TAL? ¡MUY BIEN!
[SIC] (PARENTHESES) {A,B}
RE: SUBJECT XLR-CABLE
« MERCI » DANKE
¿QUÉ TAL? ¡MUY BIEN!
[SIC] (PARENTHESES) {A,B}
RE: SUBJECT XLR-CABLE
« MERCI » DANKE

Contextual Alternates

23:55
23:55

Stylistic Set 1

1 ¼Mile ½Hour ¾Cup
1 ¼Mile ½Hour ¾Cup

Tabular Figures

100 EUR
111 CHF
100 EUR
111 CHF

Superscript

NASA®
NASA®

Information

Technical Data

Encoding:Latin Extended
File Formats:OTF, TTF, WOFF, WOFF2
Version:1.0

Download

Specimen PDF
Trial Fonts

Language Support

Afrikaans, Albanian, Asu, Basque, Bemba, Bena, Bosnian, Catalan, Cebuano, Chiga, Colognian, Cornish, Corsican, Croatian, Czech, Danish, Dutch, Embu, English, Esperanto, Estonian, Faroese, Filipino, Finnish, French, Friulian, Galician, German, Gusii, Hungarian, Icelandic, Ido, Indonesian, Interlingua, Irish, Italian, Javanese, Jju, Kabuverdianu, Kalaallisut, Kalenjin, Kamba, Kikuyu, Kinyarwanda, Kurdish, Latvian, Lithuanian, Lojban, Low German, Lower Sorbian, Luo, Luxembourgish, Luyia, Machame, Makhuwa-Meetto, Makonde, Malagasy, Malay, Maltese, Manx, Māori, Meru, Morisyen, North Ndebele, Northern Sotho, Norwegian Bokmål, Norwegian Nynorsk, Nyanja, Nyankole, Occitan, Oromo, Polish, Portuguese, Rejang, Romanian, Romansh, Rombo, Rundi, Rwa, Samburu, Sango, Sangu, Sardinian, Scottish Gaelic, Sena, Shambala, Shona, Slovak, Slovenian, Soga, Somali, South Ndebele, Southern Sotho, Spanish, Sundanese, Swahili, Swati, Swedish, Swiss German, Taita, Taroko, Teso, Tsonga, Tswana, Turkish, Turkmen, Upper Sorbian, Vunjo, Walloon, Walser, Welsh, Western Frisian, Wolastoqey, Xhosa, Zulu

Log In
Backstage
Add to Cart

Welcome to Source Type!
Accept cookies?